U.S. DEPARTMENT OF COMMERCE National Technical Information Service

AD-A031 923

Ambient Temperature & Humidity Correction Factors for Exhaust Emissions from Two Classes of Aircraft Turbine Engines

National Aviation Facilities Experimental Ctr, Atlantic City, NJ

Oct 76

321093

CI

S

AMBIENT TEMPERATURE AND HUMIDITY CORRECTION FACTORS FOR EXHAUST EMISSIONS FROM TWO CLASSES

OF AIRCRAFT TURBINE ENGINES

Louis Allen Gerald R. Slusher

OCTOBER 1976

FINAL REPORT

Document is available to the public through the National Technical Information Service Springfield, Virginia 22151

Prepared for

U. S. DEPARTMENT OF TRANSPORTATION FEDERAL AVIATION ADMINISTRATION

Systems Research & Development Service

Washington, D.C. 20590

REPRODUCED BY
NATIONAL TECHNICAL
INFORMATION SERVICE
U. S DEPARTMENT OF COMMERCE
SPRINGFIELD, VA. 22161

NOTICE

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

Technical Report Documentation Page

1. Report No.	2. Government Accession No.	3. Recipient's Catalog No.				
FAA-RD-76-149						
	·					
4. Title and Subtitle		5. Report Date				
AMBIENT TEMPERATURE AND H	UMIDITY CORRECTION FACTORS	October 1976				
FOR EXHAUST EMISSIONS FRO	M TWO CLASSES OF AIRCRAFT	6. Performing Organization Code				
TURBINE ENGINES						
		8. Performing Organization Report No.				
7. Author(s)	n (1)					
Louis Allen and Gerald	K. Slusher	FAA-NA-76-16				
9. Performing Organization Name and Addres		10. Work Unit No. (TRAIS)				
Federal Aviation Administra						
National Aviation Facilitie		11. Contract or Grant No.				
Atlantic City, New Jersey O	8405	201-521-000				
		13. Type of Report and Period Covered				
12. Sponsoring Agency Name and Address		Final				
U.S. Department of Transpor	February 1974 - August 1975					
Federal Aviation Administra	,					
Systems Research and Development Service 14. Sponsoring Agency Code						
Washington, D.C. 20590	•					
15. Supplementary Notes						

16. Abstract

Correction coefficients to reduce the production of exhaust emissions to standardday conditions for ambient temperature and humidity were developed for two classes of aircraft turbine engines. Correlation and multiple regression methods were utilized in the analysis of emission measurements recorded from two turbine engines, operated under naturally occurring environmental conditions, starting in the winter and continuing through the summer season. Correction factors were established for the emission index (EI) and power index (PI) for carbon monoxide (CO), total hydrocarbons (THC), and nitrogen oxides (NO_X) for each of five engine power conditions of idle, approach, cruise, maximum continuous, and takeoff. Ambient temperature produced the dominant effect on all gaseous emissions. EI and PI for THC required the greatest magnitude of ambient temperature correction factors. Humidity had a significant secondary effect on the generation of $NO_{\mathbf{x}}$. The effects of barometric pressure were within experimental error for the minimal range of pressures encountered. The correction coefficients established from a TF30-P1 engine data base were determined to be applicable for correction of JT8D engine emissions. The temperature and humidity effects on the generation of emissions are now considered to have been a major source of variability of measurements from past investigations.

Aircraft Correction Turbine Engines Emissions (Pollution) Ambient Temperature Ambient Humidity	Factors	18. Distribution Stotement Document is available through the Nation Service, 22151	ional Techni	cal Infor-
19. Security Classif. (of this report)	20, Security Clas	sif. (of this page)	21- No. of Pages	22. Price
Unclassified	Unclas	sified	1/3	3,50/3.00

TABLE OF CONTENTS

	Page
INTRODUCTION	1
Purpose Background	1
DISCUSSION	1
Description of Turbine Engines Description of Sample Probes Description of Method	1 2 2
RESULTS	5
Magnitude of Correction Factors Emission Variability Reduction for Corrected TF30-P1 and J57-43WB Engine Data Bases	18 18
SUMMARY OF RESULTS	35
CONCLUSIONS	36
REFERENCES	37

- APPENDIXES
 - A TF30-P1, JT8D-11, and J57-43WB Engine Performance with Observed and Corrected Emission Indexes
 - B Emission Indexes and Mathematical Models TF30-Pl and J57-43WB Engines. NO_X Indexes are Corrected for Humidity
 - C Correlation Coefficients Analysis of Variance Values and Coefficients from Regression Analysis
 - D Graphical Solution for K3 Humidity Constant for NO_X EI--J57-43WB Engine

LIST OF ILLUSTRATIONS

Figure		Page
1	Emission Sample ProbesTr30-Pl Engine	3
2	Emission Sample ProbeJ57-43 Engine	4
3	Ambient Temperature Correction Factors for ${ m NO}_{_{\mathbf{X}}}$ EITF30-Pl Engine	19
4	Ambient Temperature Correction Factors for $\mathrm{NO}_{\mathbf{X}}$ EIJ57-43 and JT3D Engines	20
5	Ambient Temperature Correction Factors for ${ m NO}_{ m X}$ PITF30-Pl Engine	21
6	Ambient Temperature Correction Factors for ${\rm NO_X}$ PIJ57-43 and JT3D Engines	22
7	Ambient Humidity Correction Factors for $NO_{\rm X}$ E1TF30-P1 and J57-43 Engines	23
8	Ambient Humidity Correction Factors for NO_X PITF30-Pl and J57-43 Engines	24
9	Ambient Temperature Correction Factors for CO EITF30-Pl Engine	25
10	Ambient Temperature Correction Factors for CO EIJ57-43 and JT3D Engines	26
11	Ambient Temperature Correction Factors for CO P1TF30-P1 Engine	27
12	Ambient Temperature Correction Factors for CO PIJ57-43 and JT3D Engines	28
13	Ambient Temperature Correction Factors for THC E1TF30-P1 Engine	29
14	Ambrent Temperature Correction Factors for THC EIJ57-43 and JT3D Engines	30
15	Ambient Temperature Correction Factors for THC PITF30-P1 Engine	31
16	Ambient Temperature Correction Factors for THC PIJ57-43 and JT3D Engines	32

LIST OF TABLES

Table		Page
1	Equation (6) Constants - TF30-P1 and J57-43WB Engines	8
2	Ambient Temperature and Humidity Correction Factors for TF30-Pl Turbofan Engine Emissions	12
3	Ambient Temperature and Humidity Correction Factors for JT3D Turbofan Engine Emissions	15
4	Variability Reduction of Corrected TF30-Pl and JT8D Engine Emission Data Base	33
5	Variability Reduction of Corrected J57-43WB Engine Emission Data Base	34

INTRODUCTION

PURPOSE.

The purpose of this report was to establish correction factors for reducing exhaust emissions from two classes of aircraft turbine engines to standard-day temperature and humidity.

BACKGROUND.

The Clean Air Amendments of 1970 (reference 1) specified that the United States Department of Transportation (DOT) and the Federal Aviation Administration (FAA) promulgate regulations enforcing the aircraft engine emission standards established by the Environmental Protection Agency (EPA). Since the emission measurements showed significant variability throughout investigations performed by EPA and industry (reference 2), it was apparent that the variability would have to be quantified.

Since 1971, two major variability problems regarding emission measurements have been identified by industry and government study teams. The first problem involves acquiring a representative emission sample from the exhaust plume. Stratification of emissions in the exhaust plume has been proven by detailed traverse probing and the analysis of profile and contour plots of carbon monoxide (CO), total hydrocarbons (THC), and oxides of nitrogen (NO $_{\rm x}$). Studies of the traverse emission plots indicate that the use of fixed probing techniques to provide representative samples is feasible (reference 3).

The second problem area affecting emission measurements involves the effect of changes in ambient weather conditions, particularly temperature and humidity, on emission levels.

Therefore, the FAA was commissioned to conduct an investigation of these variability problems at the National Aviation Facilities Experimental Center (NAFEC), Atlantic City, New Jersey. The results of that portion of the investigation designed to establish the quantitative effects of ambient temperature, humidity, and barometric pressure on the production of turbine engine emissions and to establish correction factors to normalize the ambient weather effects for standard sea level conditions are reported here.

DISCUSSION

DESCRIPTION OF TURBINE ENGINES.

Two aircraft turbine engines were tested, TF30-Pl mixed-flow turbofan engine and J57-43 turbojet engine. A surplus USAF TF30-Pl turbofan engine was selected as a test vehicle because of performance similarities to the commercial JT8D engine. The TF30-Pl turbofan engine was modified by removing the afterburner assembly and installing a fixed-area exhaust nozzle for commercial engine

simulation. The engine incorporates a front fan, having a bypass to engine airflow ratio of approximately 1.09 to 1, which diverts air through an annular duct that forms the outer shell of the engine. The bypass air is mixed with the exhaust gases downstream of the turbine. The pressure ratio across the compressor is 16 to 1. The engine, as modified, provides 11,500 pounds thrust at takeoff power.

A J57-43WB turbojet engine was made available by the USAF for this investigation and was selected because of performance similarities to the commercial JT3D-1 turbofan engine. Parameters of concern were those that influence the generation of emissions, specifically, the air pressure and temperature levels at the inlet to the combustion chambers. The J57-43WB is a turbojet engine featuring a compressor pressure ratio of 12.5 to 1 at high power. The J57-43WB engine, was utilizes as a test vehicle to simulate combustion chamber inlet conditions of the JT3D-1 engine.

DESCRIPTION OF SAMPLE PROBES.

Four fixed sample probes were installed through the TF30-P1 tailpipe in proximity to the core-fan duct splitter, as shown in figure 1. Each probe contained three sample orifices (0.030-inch diameter) located to sample only exhaust gases from the core. A random sample pattern was achieved by installing the probes on varying chord angles. These fixed sample probes were utilized to determine the emission levels of the TF30-P1 engine during the ambient factors tests, since various probing techniques at the exhaust nozzle exit were being investigated concurrently.

A fixed, 12-point sample probe in the shape of a square was utilized for the J57-43WB ergine. The probe was positioned with the diagonals rotated 22.5° from the vertical and horizontal centerlines as shown in figure 2. The probe was designed to sample at 62 percent of the nozzle radius through 0.03-inch holes located at the midpoint and one-ninth radius on both sides of the midpoint of each side (reference 4). The probe was positioned for acquiring representative emission samples based on traverse results of a JT3D-1 engine with similar combustion chambers and strut configurations. The probe was located 10 inches downstream of the exhaust nozzle to eliminate or minimize probe effects on engine performance.

DESCRIPTION OF METHOD.

When measuring the emissions of turbine aircraft engines under varying atmospheric conditions, there may be no control of inlet air temperature (t₂), specific humidity (H), or pressure (P). Therefore, if the regulations for emissions are to be enforced, the effect of these ambient weather conditions on the emissions must be known quantitatively.

Using the J57-43WB and TF30-P1 engines, exhaust emission measurements were acquired over the range of ambient conditions occurring during the winter, spring, and summer seasons. Emissions of THC, CO, and NO_X were measured over five engine power settings for ambient inlet temperatures of 16° Fahrenheit (F) to 94° F and specific humidity range of 10 to 150 grains of

3

FIGURE 2. EMISSION SAMPLE PROBE--J57-43 ENGINE

water vapor per pound of dry air. Barometric pressure extremes were minimal, being less than 1 inch of mercury.

Mathematical modeling of emission generation in turbine engines (reference 5) has indicated that air pressure (P_3) and temperature (t_3) at the inlet to the combustion chambers are major parameters determining emission levels for a given combustion chamber. The objectives of the test procedures were to maintain a constant value of engine power, while allowing ambient temperature to vary. The primary engine power conditions of idle, approach, cruise, maximum continuous, and takeoff were selected for development of separate correction factors, each at constant P3 levels. Power settings were held constant throughout the investigation by maintaining a constant engine pressure ratio (EPR), constant corrected thrust, and constant corrected fuel flow. Both engines were operated at identical EPR's at power conditions of approach, cruise, and maximum continuous. This procedure was implemented to determine the effect on the correction factors of the difference in compressor pressure ratio levels between the two engines. Each test period consisted of an upcalibration and a down-calibration procedure through the selected power conditions. Engine stabilization was determined by monitoring the gaseous emission records on continual basis. When stabilization was reached, the variation of the gaseous emissions became random; whereas, during stabilization, the records would show a steadily increasing or decreasing trend with time. The emission measurement systems conformed to the specification of reference 6. The data base included approximately 230 engine performance and emission measurements, for each engine tested (appendix A).

The data collected were analyzed by verifying the existence of meaningful effects, converting the data to its most usable form and then describing the generation of emissions mathematically. To accomplish the analysis, correlation, transformation and multiple regression techniques were utilized to generate the desired constants for the mathematical models. The correction factors were then calculated as the ratio of the mathematical model, solved for standard ambient conditions to the model, which may be solved for actual conditions to calculate the correction factor.

RESULTS

The emission indexes were inspected initially by plotting against the inlet temperature (t_2). These plots are included in appendix B. The emission of CO and THC decreases with increased ambient temperature, while NO_x increases with increased temperature. A linear equation fit was considered as being the simplest way of defining the emissions. However, extrapolation implied zero or negative emissions. As a result, several alternative models were postulated and tested. The models were variations of the general equation for a straight line,

$$y = mx + b \tag{1}$$

Case I

$$E1 = mT + b$$

Case II

$$EI = m/T + b \tag{3}$$

Case III

where EI is emission index

T is absolute temperature (Rankine)

m is the slope

b is the intercept

The transformations of equations 3 and 4 to parabolic-type curves from the straight-line equation, was accomplished by substituting 1/T for T and for equation 4, substituting 1n El for El. The transformations were used so that straight-line fitting techniques (least squares) could be employed for the fitting of more complex functions. Equation 2 and 3 were utilized in the analysis, but were discarded, appendix C.

In the actual statistical computer output, specific humidity and atmospheric pressure were added, making the model a multiple linear fit, thus making the general equation;

$$y = b + m_1 X_1 + m_2 X_2 + m_3 X_3 + E$$
 (5)

where y = log emission index

b = intercept

m₁= coefficient associated with X₁

 X_1 = temperature reciprocal 1/T

m2= coefficient associated with X2

X₂= specific humidity

m3= coefficient associated with X3

X3= barometric pressure

E = error term

The tabulation of the correlations, statistical tests, and regression coefficients for the specific humidity, temperature, and pressure are included in appendix C. The generated statistics were utilized in the following way:

- 1. The correlation coefficients were tested to determine if a relationship between the emission index and specific measured ambient conditions could exist.
- 2. Multiple correlation coefficient squared showed the percentage of variability explained by the equation that was generated.

- 3. The F value was tested to determine if the multiple correlation coefficient squared was more than chance.
- 4. Regression coefficients, intercept value, and error of estimate were used to generate the equation.

A review of the correlation coefficients shows that for most power settings, barometric pressure does not contribute significantly to the emission index. This could be due to the rather narrow range of ambient pressures over which the tests were run, (less than 1 inch of mercury) and the constant EPR and P3 requirement of the test procedure. As a result, barometric pressure was discounted as a meaningful factor in the mathematical models to be presented.

Although the linear and the inverse temperature correlations showed that definite relationships could exist, they were both aesthetically and scientifically lacking in justification. It was noted empirically that the rate of chemical reaction was a function at the natural logarithm, e, raised to a power varying inversely to the absolute temperature. Therefore, the model of equation 6 was used to characterize the production of CO, THC, and NO_{X} in engine exhaust emissions. The least-squares curve fit and subsequent transformation results were generalized in the mathematical statement:

EI =
$$K_1 = K_1 = \frac{K_2/T - K_3 H}{e - e + (E \text{ or } \frac{1}{E})}$$
 (6)

where EI is the emission index, pounds pollutant per 1,000 pounds feel.

 K_1 = equation constant equivalent to intercept of the equation when in logarithmic form

 K_2 = constant associated with the temperature

 K_3 = constant associated with the humidity

e = base natural logarithms

E = the error term

T = absolute temperature, degrees Rankine

H = specific humidity, grains of water vapor in one pound dry air.

Equations of the same form were developed for the power index, PI, in units of pounds pollutant per 1,000 pounds thrust.

A tabulation of the constants obtained by use of a log transformation in a multiple linear regression program and its subsequent reconversion is presented in table 1. These data are a result of one quality check where points that deviated from an earlier fit were removed (i.e., points with large residual errors were eliminated). Reasons for the outliers were sought and found in some cases.

TABLE 1. EQUATION (6) CONSTANTS--TF30-P1 AND J57-43WB ENGINES

	ERROR	1.05	1.05	1.07	1.04	1.05	1.03	1.07	1,12	1.12	1.20	1 05	00.1	1.07	1.07	1.05	1.04		1.10	1.U/	1.09	1.15	1.21	1.10	3.36	1.04	1.07	1.34
SAMPLE	ঙ্গা	87	37	45	77	20	34	37	30	34	18	п,	.	33	7 7	97	18	37	† \	36	30	29	17	41	37	31	13	22
	FIGURE	B-1	B-3	ı	ı	1	B- 2	B-4	1	i	1		1	1	ı	ı	1		l	1	ı	•	ı	B-5	B-7	B-6	B-8	ı
	K3	0	0	0	0	0	0	0	0	0	0	c	> (0	0	0	0	c	0)	0	0	0	0	0	0	0 0	0
	<u>K2</u>	1256,563	2021.082	2855.175	2542,404	1908.304	- 78.25197	1861,4501	3714.9572	4345.10736	3040,7463	1060 613	1000	1928.538	2736.993	355.89	1839.695	_1538 370	0100000	2114.235	3465.111/	4559.685	3048,5308	3063,438	9046.7352	1147.721	1810.508	16/1.132/
	뫼	5.1570	0.2927	0.013281	0.017659	0.052138	92,4123		0.00458	966000.0	0.006367	8 3313	0.000	0.21112	0.009658	0.015166	0.03643	3122 7.285)	0.2/4UI	0.00633	0.00053	0.005289	0.03624	2.57X10 ⁻⁸	14.023	0.08685	72.074
	POWER	IDLE	APP.	CRUISE	MAX COUT	T.O.	IDLE	APP	CRUISE	MAX CONT	T.O.	INE	, pp.	APP	CRUISE	MAX CONT	T.0.	Thir	ADD	77	CRUISE	MAX CONT	T.0.	IDLE	APP	IDLE	APP	CKUISE
	ENGINE	TF30	TF30	TF30	TF30	TF30	157	157	157	157	157	TF30	11.30	11.30	TF30	TF30	TF30	157	157	,,,,	757	157	J57	TF30	TF30	157	15/) (° F
	POLLUTANT				CO EI	CO EI						TO 07												THC EI	THC EI	THC EI		

EQUATION (6) CONSTANTS--TF30-P1 AND J57-43WB ENGINES (Continued) TABLE 1.

	ERROR	1.10	1.11 1.05 1.32 1.19	1.09 1.05 1.04 1.04	1.05 1.07 1.05 1.04	1.06 1.07 1.04 1.05	1.17 1.06 1.06 1.05 1.06
SAMPLE	Z	39 39	29 11 21 19	44 38 42 42 20	21 27 26 14	37 34 41 42 20	20 31 26 25 15
	FIGURE	1 1	1 1 1 1	- B-9 B-11 B-13	- B-10 B-12 B-14 B-15		
	<u>K3</u>	00	0000	00246 00272 00283 00272	0027 0027 0027 0027	00357 00348 00274 00309	0032 0032 0032 0032
	K2	3169.4998 9660.748	-851.5824 2314.9414 1278.3011 779.3156	-2031.98 -2016.97 -2127.54 -1794.91 -1439.07	-1136.415 -1769.837 -1604.362 -1900.329 -1690.599	-2441.26 -2185.83 -2201.00 2331.48 2152.75	4406.446 1641.981 -2023.692 -2348.734 -1951.914
	<u>K1</u>	0.02464 4.97X10-9	1305.873 0.033016 0.06176 0.13523	148.518 299.144 685.693 428.884 226.83	29.02622 220.2439 232.0866 453.740 380.6582	294.931 260.495 454.172 741.874 617.405	33737.7 174.8873 466.4236 95 62496 553.0429
	POWER	IDLE APP	IDLE APP CRUISE MAX CONT	IDLE APP CRUISE MAX CONT T.O.	IDLE APP CRUISE MAX CONT T.O.	IDLE APP CRUISE MAX CONT T.O.	IDLE APP CRUISE MAX CONT T.O.
	ENGINE	TF30 TF30	157 157 157 150	TF30 TF30 TF30 TF30	157 157 157 157	TF30 TF30 TF30 TF30	157 151 151 751 751
	POLLUTANT		THC PI IHC PI THC PI THC PI	NOX EI NOX EI NOX EI NOX EI NOX EI	NOX EI NOX EI NOX EI NOX EI NOX EI	NOx PI NOx PI NOx PI NOx PI NOx PI	MOx PI NOx PI NOx PI NOx PI NOx PI

The utility of these constants is twofold: (1) By using them in the general equation, a prediction equation for the respective power setting is now available; and (2) it provides a method of using ambient T and H to correct EI and PI to standard condition. A review of table 1 suggests that for the TF30-P1 engine the coefficients for humidity tend to approach some constant value over the power settings for NO_x . NO_x EI approaches 0.0027, and NO_x PI approaches 0.0032. The humidity coefficents for the J57-43 engine were developed graphically across engine power, appendix D.

Regression and correlation analysis of the CO measurements from the TF30-Pl engine indicated humidity coefficients (K3) of approximately -0.0013 for CO EI and -0.0016 for CO Pl. Similar analysis of the CO measurements from the J57-43WB engine failed, however, to confirm the existence of humidity correction factors. Ambient temperature dependent models and correction factors with and without humidity were applied to the TF30-Pl data base (appendix A). Ambient temperature correction factors without humidity significantly lowered the standard deviation of the corrected indexes and further lowered the standard deviation of the data base compared with the original factors including humidity at all power conditions except idle. Based on these results, the CO humidity factors for the TF30-Pl engine were eliminated, and the total effects were assigned to ambient temperature.

A review of the error values shows that for CO and NO_{X} , the equations utilized data that were within 10 percent or less of the respective equation yield. The error values stated are a result of transforming from a logarithmic to a linear scale and are one standard deviation in magnitude. If a normal distribution of data is assumed for the logarithmic state, the limits determined by the error statement contain approximately 68 percent of the data.

Total hydrocarbons measurements from the TF30-P1 engine show larger error terms, especially for the approach settings. The TF30-P1 engine THC correction factors as originally developed were revised as a result of the error of determination. Primarily, the modification involved elimination of the humidity factors, because of questionable correction under high humidity conditions at approach power. The humidity factor was also eliminated at idle power, since the small factor was within the error of determination. Regression analyses were then performed to assign the total effects to the ambient temperature correction. The THC constants presented in table 1 were developed on this basis and are therefore only temperature dependent.

Multiple regression analysis of the CO and THC measurement from the J57-43WB engine indicated that humidity and barometric pressure were not significant. The CO and THC measurements from the J57-43WB engine were analyzed by simple regression analysis, using only ambient temperature as the variable.

A number of commercial turbine engines incorporate fuel controls that regulate idle power to a constant thrust or constant EPR. This feature is accomplished by varying engine rotational speed (RPM) with changes in ambient temperature. The fuel controls of engines such as, the TF30-P1, JT8D, and JT3D-1 engine have this feature. The fuel control of the J57-43WB engine, on the other hand,

regulates idle power to a constant high rotor speed (N_2) and, as a result, varies thrust. Significant differences exist in the mathematical models and correction factors for the two engines at idle power. Correction factors for JT3D engine emissions at idle power were developed from the J57-43WB engine measurements. A data base was established at constant power conditions (EPR), consisting of selected J57-43WB engine emission measurements from low idle for low ambient temperatures and from high idle for high ambient temperatures.

Variability of the NO_{X} measurements from the J57-43WB engine required the use of graphical methods across power for determination of K₃ humidity constant. The humidity K₃ constants for the J57-43WB engine measurements of NO_{X} EI and PI levels were related to combustor inlet temperature (t₃) at various humidity levels. The information were then cross plotted against humidity, and K₃ constants were developed by fitting equation 6 to the results. The graphical solution for K₃ is included in appendix D. The NO_{X} data base for the J57 engine was corrected for humidity, and the ambient temperature effects were determined by simple regression analysis.

The ambient temperature and humidity correction factors for the TF30-PI and JT3D turbine engine emissions are presented in tables 2 and 3. The correction factors are defined as the product of C_T X C_H , temperature correction times humidity correction. C_T and C_H are calculated from the ratio of the mathe…atical model (equation 6) for the EI or PI at standard conditions of 59° F and zero humidity to the model for the temperature and humidity conditions of the day. The correction factors were calculated for the TF30-Pl and J57-43WB engines using the values for the model associated with table 1. Temperature correction coefficients were determined by solving equations 7 and 8.

$$C_{T} = \frac{K_{1} e}{K_{2}/T}$$

$$K_{1} e$$
(7)

The intercept constants, K_1 , cancel, and K_2 was determined by correlation and regression analysis. Constant K_4 results from solving for the standard temperature.

$$C_{T} = \frac{K_{\Delta}}{K_{2}/T}$$
e (8)

The correction factor for humidity was determined by equations 9 and 10:

$$C_{H} = \frac{K_{1} e}{K_{1} - K_{3}(H)}$$
 (9)

The intercept constants cancel and solving for zero humidity, e to the zero power, is one, and K3 in negative.

$$K_3(H)$$

$$C_{H} = e \tag{10}$$

TABLE 2. AMBIENT TEMPERATURE AND HUMIDITY CORRECTION FACTORS FOR TF30-P1 TURBOFAN ENGINE EMISSIONS

1.0 DEFINITION OF TERMS

- 1.1 C_T : Correction coefficient for variations in ambient temperature from the standard of 59° F.
- 1.2 $C_{\mbox{\scriptsize H}}\colon$ Correction coefficient for variations in humidity from the standard of zero.
- 1.3 e: Base natural logarithms
- 1.4 T: Ambient temperature absolute--degrees Rankine (t° F + 459.69)
- 1.5 H: Ambient specific humidity--grains of water vapor in 1 pound of dry air
- 1.6 EIC: Emission index corrected (EI x C_T x C_H), pounds pollutant per 1,000 pounds fuel
- 1.7 PI $_{\rm C}$: Power index corrected (PI x C $_{\rm T}$ x C $_{\rm H}$), pounds pollutant per 1,000 pounds thrust
- 2.0 IDLE POWER EMISSION INDEX

					Figure
2.1	C _T :	(NO _x)	==	0.01989 2031.98/1	3
2.2	CH:	(xo _x)	=	e0.0027(II)	7
2.3	C _T :	(CO)	=	11.2747 e1256.56/T	9
2.4:	c _T :	(THC)	=	367.25 e3063.4/T	13

3.0 IDLE POWER

POWER INDEX (PI) POWER ITDEX

TABLE 2. AMBIENT TEMPERATURE AND HUMIDITY CORRECTION FACTORS FOR TF30-P1 fURBOFAN ENGINE EMISSIONS (Continued)

			Figure
3.1	c _T :	$(NO_x) = 0.009036_e^{2441.26/T}$	5
3.2	c _{H:}	$(NO_x) = e^{0.0032}(H)$	8
3.3	c _T :	$(CO) = \frac{7.7275}{e^{1060.61/T}}$	11
3.4	c _T :	$(THC) = \frac{450.6}{e^{3169.50/T}}$	15
4.0 AF	PROA	CH POWER (EPR 1.31) EMISSION IN	DEX
4.1	c _T :	$(NO_x) = 0.020474 e^{2016.97/T}$	3
		$(NO_X) = e^{0.0027(H)}$	7
4.3	C _T :	$(CO) = \frac{49.2303}{e^{2021.08}/T}$	9
4.4	c _T :	$(THC) = \frac{37559580.0}{e^{9046.70/T}}$	13
5.0 AF	PROA	CH POWER (EPR 1.31) POWER INDEX	
5.1	C _T :	$(NO_x) = 0.014795 e^{2185.83/T}$	5
5.2	c _H :	$(NO_{x}) = e0.0032(H)$	8
		$(CO) = \frac{41.18596}{e^{1928.54/T}}$	11
5.4	C _T :	$(THC) = \frac{122704000.0}{9660.75/T}$	15
6.0 CF	UISE	POWER (EPR 1.76) EMISSION INDE	X
6.1	c_T :	$(NO_x) = 0.016544 e^{2127.54/T}$	3
6.2	C _H :	$(NO_x) = e^{0.0027(H)}$	5
6.3	c _T :	(CO) = $\frac{245.8173}{2855.175/T}$	9

TABLE 2. AMBIENT TEMPERATURE AND HUMIDITY CORRECTION FACTORS FOR TF30-P1 TURBOFAN ENGINE EMISSIONS (Continued)

7.0 CRUISE POWER (EPR 1.76) POWER INDEX

11.3 C_T : (CO) = $\frac{34.70278}{e^{1839.70/T}}$

7.1
$$C_T$$
: $(NO_x) = 0.014359 e^{2201.0/T}$ 5
7.2 C_H : $(NO_x) = e^{0.0032(H)}$ 8
7.3 C_T : $(CO) = \frac{195.7294}{e^{2736.99/T}}$ 11
8.0 MAXIMUM CONTINUOUS POWER (EPR 1.905) EMISSION INDEX
8.1 C_T : $(NO_x) = 0.031415 e^{1794.91/T}$ 3
8.2 C_H : $(NO_x) = e^{0.0027(H)}$ 5
8.3 C_T : $(CO) = \frac{134.502}{e^{2542.46/T}}$ 9
9.0 MAXIMUM CONTINUOUS POWER (EPR 1.905) POWER INDEX
9.1 C_T : $(NO_x) = 0.011165 e^{2331.48/T}$ 5
9.2 C_H : $(NO_x) = e^{0.0032(H)}$ 8
9.3 C_T : $(CO) = \frac{93.8802}{e^{2355.90/T}}$ 11
10.0 TAKEOFF POWER (EPR 2.05) EMISSION INDEX
10.1 C_T : $(NO_x) = 0.06238 e^{1439.07/T}$ 3
10.2 C_H : $(NO_x) = e^{0.0027(H)}$ 7
10.3 C_T : $(CO) = \frac{39.60978}{e^{1908.30/T}}$ 9
11.0 TAKEOFF POWER (EPR 2.05) POWER INDEX
11.1 C_T : $(NO_x) = 0.01579 e^{2152.75/T}$ 5
11.2 C_H : $(NO_x) = 0.01579 e^{2152.75/T}$ 5
11.2 C_H : $(NO_x) = e^{0.0032(H)}$ 8

11

TABLE 3. AMBIENT TEMPERATURE AND HUMIDITY CORRECTION FACTORS FOR JT3D TURBOFAN ENGINE EMISSIONS

1.0) DEFINITION OF TERMS (See table 2)

2.0 IDLE POWER EMISSION INDEX

			Figure
2.1	C_T :	$(NO_X) = 0.12053 e^{1097.47/T}$	4
		$(NO_x) = e^{0.0027(H)}$	7
2.3	C _T :	$(C0) = \frac{1.6841}{e^{270.35/T}}$	10
2.4	C _T :	$(THC) = \frac{54.3643}{e^{2072.534/T}}$	14
3.0	IDL	E POWER POWER INDEX	
3.1	c_T :	$(NO_x) = 0.0095737 e^{2411.25/T}$	6
3.2	cH:	$(NO_x) = e^{0.0032}(H)$	8
3.3	c_T :	(C0) = 1.0	12
3.4	c _T :	$(THC) = \frac{54.3643}{e^{2072.534/T}}$	16

4.0 APPROACH POWER (EPR 1.31) EMISSION INDEX

4.1
$$C_T$$
: $(NO_x) = 0.03297 \text{ e}1769.84/T$ 4
4.2 C_H : $(NO_x) = \text{e}0.0027(\text{H})$ 7
4.3 C_T : $(CO) = \frac{36.1889}{\text{e}^{1861.45/T}}$ 10
4.4 C_T : $(THC) = \frac{32.8038}{\text{e}^{1810.51/T}}$

5.0 APPROACH POWER (EPR 1.31) POWER INDEX

TABLE 3. AMBIENT TEMPERATURE AND HUMIDITY CORRECTION FACTORS FOR TURBOFAN JT3D ENGINE EMISSIONS (Continued)

			Figure
5.1	$C_{\mathbf{T}}$:	$(NO_x) = 0.04219 e^{1641.98/T}$	6
		$(NO_x) = e^{0.0032(H)}$	8
		$(CO) = \frac{58.9155}{e^{2114.23/T}}$	12
5.4	c _T :	(THC) = $\frac{86.752}{e^{2314.94/T}}$	16
6.0	CRU1	ISE POWER (EPR 1.76) EMISSION I	NDEX
6.1	C _T :	$(NO_x) = 0.04536 e^{1604.36/T}$	4
6.2	C _H :	$(NO_x) = e^{0.0027(H)}$	7
6.3	c_T :	$(C0) = \frac{1289.7346}{e^{3714.957/T}}$	10
		$(THC) = \frac{25.074}{e^{1671.13/T}}$	14
7.0	CRUI	ISE POWER (EPR 1.76) POWER INDE	X
7.1	c _T :	$(NO_x) = 0.02021 e^{2023.69/T}$	6
		$(NO_x) = e^{0.0032(H)}$	8
7.3	C_T :	$(CO) = \frac{796.7222}{e^{3465.11/T}}$	12
7.4	c _T :	$(THC) = \frac{11.7574}{e^{1278.30/T}}$	16
8.0	MAX1	MUM CONTINUOUS POWER (EPR 1.90.	5) EMISSION INDEX
8.1	c _T :	$(NO_x) = 0.02564 e^{1900.33/T}$	4
8.2	c _H :	$(NO_x) = e^{0.0027(H)}$	7

8.3 C_T : (CO) = $\frac{4346.297}{e^{4345.107}/T}$

10

TABLE 3. AMBIENT TEMPERATURE AND HUMIDITY CORRECTION FACTORS FOR JT3D TURBOFAN ENGINE EMISSIONS (Continued)

9.0 MAXIMUM CONTINUOUS POWER (EPR 1.905) POWER INDEX

			Figure
9.1	c _T :	$(NO_X) = 0.01080 e^{2348.73/T}$	6
9.2	c _H :	$(NO_x) = e^{0.0032(H)}$	8
9.3	C _T :	$(CO) = \frac{6573.235}{4559.68/T}$	12
		(THC) = $\frac{4.49277}{e^{779.15}6/T}$	16
10.0	TAK	E-OFF POWER (EPR 2.30) EMISSION IND	EX
10.1	c _T :	$(NO_{x}) = 0.038413 e^{1690.60/T}$	4
10.2	C _H :	$(NO_x) = e^{0.0027(H)}$	7
10.3	c _T :	$(CO) = \frac{351.522}{e^{3040.746/T}}$	10
11.0	TAKI	E-OFF POWER (EPR 2.30) POWER INDEX	
11.1	C _T :	$(NOx) = 0.02321 e^{1951.91/T}$	6
11.2	c _H :	$(NO_x) = e^{0.0032(H)}$	8
11.3	C _T :	(CO) = $\frac{356.8673}{e^{3048.53/T}}$	12

MAGNITUDE OF CORRECTION FACTORS.

The ambient temperature and humidity correction factors for the TF30-Pl and J57-43WB engine emissions were solved for the temperature coefficient ($C_{\rm T}$) and then solved for the humidity coefficient ($C_{\rm H}$). When solving for $C_{\rm T}$ the humidity was held constant at zero, and when solving for $C_{\rm H}$, the temperature was held constant at the standard of 59° F.

 $C_{\rm T}$ for EI and PI was plotted for each pollutant on composite engine power illustrations for the five power conditions as shown in figures 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, and 16. Similar curves $NO_{\rm X}$ EI and $NO_{\rm X}$ PI for $C_{\rm H}$ are shown in figures 7 and 8. The characteristics and magnitude of the correction factors are apparent.

EMISSION VARIABILITY REDUCTION FOR CORRECTED TF30-P1 AND J57-43WB ENGINE DATA BASES.

The emission measurements from the TF30-Pl and J57-43WB engines were tabulated in appendix A, both uncorrected and corrected for ambient temperature and humidity. The one-standard-deviation variability of these measurements are tabulated in tables 4 and 5. As may be noted, the correction of the measurements produced a significant reduction in variability. Variability reduction of the data base with application of the correction factors was striking. Eased on one standard deviation, variability of the THC EI was reduced 41 to 66 percent. Variability of CO EI was lowered 35 to 60 percent, and NO_{X} EI up to 33 percent.

An existing data base for JT8D-11 engine was included in appendix A and the one-standard-deviation variability was tabulated in table 4. The JT8D engine emission measurements were corrected for ambient temperature and humidity to demonstrate the applicability of the TF30-Pl correction factors. As may be seen in table 4, the reduction in variability of the JT8D-11 engine corrected emission indices is approximately equal in magnitude to the reduction of variability of the TF30-Pl engine emission indexes. Because of this similarity, the factors may be utilized to correct the JT8D engine emissions for ambient temperature and humidity effects.

AMBIENT TEMPERATURE CORRECTION FACTORS FOR NOX EI--TF30-P1 ENGINE FIGURE 3.

AMBIENT TEMPERATURE CORRECTION FACTORS FOR NOX EI--J57-43 AND JT3D ENGINES FIGURE 4.

AMBIENT TEMPERATURE CORRECTION FACTORS FOR NO $_{\rm X}$ PI--TF30-P1 ENGINE FIGURE 5.

AMBIENT TEMPERATURE CORRECTION FACTORS FOR NOX PI--J57-43 AND JT3D ENGINES FIGURE 6.

AMBIENT HUMIDITY CORRECTION FACTORS FOR NOX EI--TF30-P1 AND J57-43 ENGINES FIGURE 7.

AMBIENT HUMIDITY CORRECTION FACTORS FOR NOX PI--TF30-P1 AND J57-43 ENGINES FIGURE 8.

AMBIENT TEMPERATURE CORRECTION FACTORS FOR CO EI--TF30-P1 ENGINE FIGURE 9.

FIGURE 10. AMBIENT TEMPERATURE CORRECTION FACTORS FOR CO EI--J57 AND JT3D ENGINES

AMBIENT TEMPERATURE CORRECTION FACTORS FOR CO PI--TF30-P1 ENGINE FIGURE 11.

AMBIENT TEMPERATURE CORRECTION FACTORS FOR CO PI--J57-43 AND JT3D ENGINES FIGURE 12.

AMBIENT TEMPERATURE CORRECTION FACTORS FOR THC EI--TF30-P1 ENGINE FIGURE 13.

AMBIENT TEMPERATURE CORRECTION FACTORS FOR THC EL--J57-43 AND JT3D ENGINES FIGURE 14.

AMBIENT TEMPERATURE CORRECTION FACTORS FOR THC PI--TF30-P1 ENGINE FIGURE 15.

AMBIENT TEMPERATURE CORRECTION FACTORS FOR THC PI--J57-43 AND JT3D ENGINES FIGURE 16.

TABLE 4. VARIABILITY REDUCTION OF CORRECTED TF30-P1 AND JT8D ENGINE EMISSION DATA BASES

NE	Corrected El Reduction (Percent)	(36%) (53%) (25%)	(55%) (42%) (21%)	(5%) (35%)	(10%)
JT8D-11 ENGINE	Corrected EI One Standard Deviation	2.40 1.08 0.128	0.59 0.14 0.42	0.19	0.18 0.85
	Uncorrected EI One Standard Deviation	3.73 2.31 0.17	1.31 0.24 0.53	0.20	0.20
NE	Corrected El Reduction (Percent)	(40%) (40%) (8%)	(35%) (61%) (24%) (22%) (0%)	(68%) (33%)	(45%) (10%)
TF30-P1 ENGINE	Corrected EI One Standard Deviation	3.66 1.51 0.34	1.66 0.48 0.37 0.45 1.14	0.179 0.66	0.16
	Uncorrected EI One Standard Deviation	6.14 3.97 0.37	2.54 1.24 0.49 0.67 1.14	0.56	0.30
	Emission	CO IDLE THC IDLE NO _X IDLE	CO APP THC APP NO _X APP CO CRUISE NO _X CRUISE	CO MC NO _x MC	CO T.O. NO _x T.O.

TABLE 5. VARIABILITY REDUCTION OF CORRECTED J57-43WB ENGINE EMISSION DATA BASE

Emission	Uncorrected EI One Standard Deviation	Corrected EI One Standard Deviation	Corrected EI Reduction (Percent)
CO IDLE		-	-
THC IDLE	15.14	8.74	(42%)
NO _X IDLE	0.30	0.25	(17%)
CO APP	3.04	1.18	(61%)
THC APP	1.14	0.67	(41%)
NO_X APP	0.34	0.26	(23%)
CO CRUISE	2.11	0.76	(64%)
$NO_{\mathbf{X}}$ CRUISE	0.71	0.72	(0)
CO MC	1.85	0.66	(64%)
NO _x MC	0.68	0.50	(26%)
со то	0.72	0.40	(44%)
$NO_{\mathbf{X}}$ TO	0.81	0.58	(28%)

SUMMARY OF RESULTS

Exhaust emission measurements were acquired from two aircraft turbine engines (J57-43WB and TF30-P1) to establish correction factors for normalizing ambient temperature, humidity, and barometric pressure effects on the generation of emissions. The mixed-flow TF30-P1 engine was modified to incorporate a fixed-area exhaust nozzle to simulate the physical characteristics and the performance of the commercial JT8D engine. A J57-43WB turbine engine was utilized as the test vehicle to simulate the physical characteristics and performance of the commercial JT3D-1 aircraft engine. Testing was conducted to take advantage of the ambient weather conditions occurring naturally during the winter through summer seasons.

The emission indexes were analyzed for ambient weather effects by postulating mathematical models that were thought likely to characterize production of emissions. The models were then evaluated by performing correlation, transformation, and multiple regression analyses. Models postulated and discarded included linear and inverse mathematical relationships. Since physical chemistry describes the behavior of chemical reaction rates logarithmically as inversely proportional to the absolute temperature, it was this equation that was utilized to characterize the production of gaseous emissions. The model was evaluated, and the equation constants were determined by a log transformation in a multiple linear regression and correlation analysis program. The correction coefficients were then determined from the ratio of the model for standard conditions, to the model for actual condition.

The measurements indicated that the factors for ambient temperature and humidity provide significant and adequate correction of emissions. Although barometric pressure may have a significant theoretical effect on emissions, the range of pressures available within the data base was only 3 percent, and the test procedures compensated for variations. Ambient temperature and humidity correction coefficients were established for each of five engine power conditions: idle, approach, cruise, maximum continuous, and takeoff for two classes of aircraft turbine engines. Separate factors were established for the various power conditions, each at constant pressure at the inlet to the combustion chambers.

The significant magnitude of the correction coefficients is striking. At an ambient temperature of zero, coefficients go as low as 0.10, and at a temperature of 100° F, the coefficients are as high as 2.40. The extremes in correction were required for the THC indexes.

The correction coefficients were evaluated by applying them to the TF30-P1 and J57-43WB engine emission data bases. The reduction in measurement variability was significant. An existing JT8D-11 engine emission data base was corrected using the TF30-P1 factors. The reduction of JT8D-11 engine emission measurement variability as corrected was of approximately equal in magnitude to that of the TF30 data base from which the factors were established. The TF30-P1

emission correction coefficients were therefore considered applicable for correction of JT8D engine emissions. A suitable data base was unavailable for testing the JT3D-1 engine correction factors developed from the J57-43WB engine emission measurements, but since the geometric and performance conditions of the J57-43WB combustion chambers were similar to combustor conditions of the JT3D engine emissions, the correction factors were considered applicable for correction of JT3D engine emissions.

CONCLUSIONS

- 1. The mathematical models developed to describe the emission characteristics as a function of ambient temperature and humidity of two classes of turbine engines exhibit good correlation of data when applied.
- 2. The correction coefficients established for the TF30 engine were considered applicable for correction of JT8D engine emissions.
- 3. Fuel control characteristics (control to constant thrust or constant speed) can influence emission output at idle power, and thus correction factors for the specific conditions must be developed.
- 4. The correction factors developed for the J57-43WB engine and modified at idle power were considered applicable for correction of JT3D engine emissions.
- 5. Ambient temperature is the dominant variable affecting the production of emissions. Humidity had significant secondary effects on the generation of nitrogen oxides.
- 6. Ambient temperature and humidity effects on the production of emissions are considered to have been a major source of variability in past investigations.

REFERENCES

- 1. Clean Air Amendments of 1970, Public Law 91-604, 91st Congress, H.R. 17255, December 31, 1970.
- 2. McAdams, H. T., <u>Analysis of Aircraft Exhaust Emission Measurements Statistics</u>, EPA Technical Report NA 5007-K-2.
- 3. Slusher, G. R., Analytical Study of Mixed-Flow JT8D Exhaust Emission
 Measurements for Fixed Probe Requirements, FAA Technical Report FAA-RD-76-140.
- 4. Klueg, Eugene P. and Slusher, G. R., Exhaust Emission Probe Investigation of a Mixed Flow Turbofan Engine, Technical Paper Presented before October 1974 Meeting, Instrument Society of America, New York, New York.
- 5. Sarli, V. J., Eiler, D. C., Marshall, R. L., Effects of Operating Variables on Gaseous Emissions, Technical Paper Presented before October, 1975 Meeting of Air Pollution Control Association Specialty Conference on Air Pollution Measurement Accuracy as in Relation to Regulation Compliance. New Orleans, Louisiana.
- 6. Control of Air Pollution from Aircraft and Aircraft Engines, Federal Register, Volume 38, Number 136, Part II, 17 July 1973.

APPENDIX A

TF30-P1, JT8D-11, AND J57-43WB ENGINE PERFORMANCE WITH OBSERVED AND CORRECTED EMISSION INDEXES

APPENDIX A

LIST OF TABLES

Table		Page
A-1	TF30-Pl Engine Performance with Observed and Corrected Emission Indexes at Idle Power	A-2
A-2	TF30-Pl Engine Performance with Observed and Corrected Emission Indexes at Approach Power	A-4
A-3	TF30-Pl Engine Performance with Observed and Corrected Emission Indexes at Cruise Power	A-6
A-4	TF30-P1 Engine Performance with Observed and Corrected Emission Indexes at Maximum Continuous Power	A-8
A-5	TF30-P1 Engine Performance with Observed and Corrected Emission Indexes at Takeoff Power	A-11
A-6	JT8D-11 Engine Performance with Observed and Corrected Emission Indexes at Idle Power	A-13
A-7	JT8D-11 Engine Performance with Observed and Corrected Emission Indexes at Approach Power	A-14
A-8	JT8D-11 Engine Performance with Observed and Corrected Emission Indexes at Maximum Continuous Power	A-15
A-9	JT8D-11 Engine Performance with Observed and Corrected Emission Indexes at Takeoff Power	A-16
A-10	J57-43 Engine Performance with Observed and Corrected Emission Indexes at Idle Power	A-17
A-11	J57-43 Engine Performance with Observed and Corrected Emission Indexes at Approach Power	A-19
A-12	J57-43 Engine Performance with Observed and Corrected Emission Indexes at Cruise Power	A-21
A-13	J57-43 Engine Performance with Observed and Corrected Emission Indexes at Maximum Continuous Power	A-23
A-14	J57-43 Engine Performance with Observed and Corrected Emission Indexes at Maximum Continuous Power	A-25

APPENDIX A

TF30-P1, JT8D-11, AND J57-43WB ENGINE PERFORMANCE WITH OBSERVED AND CORRECTED EMISSION INDEXES

Engine performance and emission measurements for the TF30-P1, JT8D-11, and J57-43WB engines at each of five power conditions are tabulated in tables A-1 through A-14. Compressor inlet temperature, humidity, and barometric pressure are included to provide a data base for possible future correlation analysis. The calculated emission indexes, EI and PI are tabulated. The emission index is also corrected using the technique developed in this report.

II 30-PT LNGT&E PERFORTANCE WITH OBSERVED ASH CORRECTED BYLSSION INDEXES AT 1DLE POWER TABLE A-1.

(_
No.N ELL CORP	2.85	3.05	3.16	2.56	2.39	3.08	3.17	2.24	3.30	2.86	3.11	3,35	3.86	,	,	2.44	3.02	2.60	3.53	2.69	2.84	3.03	2.89	2.78	2.75	3.13	3.04
1.1 1.1 1.0 1.0 1.1	17.69	14.92	14.95	12.43	12.90		13.01	12.91	12,49	13.70	14.90	13.07	14.66	12.02	13.90	13.21	13.86	14.88	12.25	14.88	15.76	14.31	11.05	12.19	11.10	12.17	12.49
CO F.1 CORP	57.08	56.33	58.14	54.88	54.82	60.19	59.26	54.76	54.31	94.40	62.02	57.33	64.36		•	56.99	58.84	56.69	56.62	59.17	62.00	58.65	59.05	58.89	57.48	56.07	62.14
F/A	.00319	.00322	.00326	.00349	91600.	.00306	.00312	.06314		.00342	.00327	.00323	.00321	61600.	.00322	91600.	.00312	.00320	.00318	.00329	.00319	.00321	.00316	\$1600	.00316	.00313	.00313
+/A CARBON BALAR	10600.	.00928	90600.	.00952	.00903	70600.	01600.	90600*	•	.00807	. 00945	.0092B	.00895	1	-	.00934	.00892	11010.	02600.	.00937	07600.	.00953	.00787	•	00 110.	816.00.	.00941
X 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1.72	1.98	41.1	2,00	1.60	2.03	2.01	1.36	2.10	2.45	2.46	2.71	2.86	'		1.83	2.23	2.10	2.79	2.18	2 :7	2.49	2.29	2.21	2,38	2.50	2.48
ΞΞ	26.25	16.28	9.32	10.64	13.25	11.38	06.21	13,13	12.73	12.01	12.70	9.44	11.01	•	•	11.32	12.47	11.12	9.5.	10.96	11.97	67.6	7.40	9.54	7.63	60,6	97.6
3 2	62.33	51.90	31.08	48.86	49.30	54.57	55.63	47.38	51.25	85.78	52.86	46.23	51.64		1	47.54	50.44	49.68	47.71	67.75	50.27	45.65	46.12	47.56	45.54	45.03	50.59
Z.T.	96.1	2.417	2.47	2.19	1.95	2.48	2.46	1.75	2.64	2.65	2.88	3.11	7.40	•		4.23	5.69	2.38	3.14	2.56	2.56	2.86	2.64	2.52	2.11	2.97	2.90
11R	29.76	19.87	19.42	11.62	16.15	13.90	18.23	16.98	16.03	13.86	14.90	10.84	13.11	13.03	15.07	13.83	15.03	12.61	10.72	12.88	14.10	10.91	8.51	10.89	8.73	10.77	11.05
3 #	70.66	63.35	64.73	53.38	60.11	66.67	68.04	61.27	64.58	64.70	62.02	53.09	61.48	1	-	58.07	60.82	52.96	53.60	55.77	59.22	52.47	53.05	54.29	52.08	53.32	59.09
COTIF PRESS RATTG	2.562	2.710	2.688	2.675	2.706	2.709	2,701	2.706	2.687	2.517	2.618	2.642	2.646	2.578	2.678	2.664	2.665	2.607	2.643	2.672	2.674	2.678	2.647	2.677	2.646	2,702	2.670
~~ o*	165	180	230	250	730	217	193	215	197	230	240	280	265	·		,	235	270	265	262	250	287	280	280	275	252	250
THRUS1 1.85	945.2	1095		1066	1093	1085	0111	1154	2111	6.776	1050	1036	1089	1098	1097	1078	1068	7101	995.4	1043	1045	1017	1019	1016	1007	106.1	104 2
FUL: FIOW LBS/IIR	833.8	897	914.2	975.9	4.969	888	907.5	892.4	882.5	903.6	894.9	902.1	914.7	897.5	894.3	882.6	P85.8	893.8	886	888.1	887.1	884.8	885.9	890	880.4	968	892.2
ATE 110W 1.85/5EA	72.7	77.5	77.8	77.6	78.8	80.7	80.7	0.62		73.3	76.0	77.5	79.2	78.1	77.2	7.77	78.8	77.5	77.5	75	77.5	76.6	77.9	78.6	77.4	79.5	19.1
Ě	1.076	1.082	1.083	1.080	1.082	1.084	1.087	1.080	1.084	1.073	+	1.079	1.081	1.082	1.084	1.083	1.083	4.075	1.082	1.080	1.084	1.077	1.077	1.080	1.081	1.085	1.084
EBLI IN IIR A	30.44	30.44	30.24	29.88	29.92	29.86	29.98	29.93	24.65	30.36	30.32	29.87	29.61	29.81	29.84	30.09	30.08	29.90	29.86	30.00	29.92	29.84	29.80	29.85	29.80	30.00	29.98
H, CRAINS	10.72	15.61	26.89	74.02	20.59	18.79	10.72	23.57	21.54	25.74	28.08	74.02	74.02	33.27	33.27	22.54	22.54	74.02	76.67	64.17	66.53	88.10	97.63	85.11	64.17	49.51	47.66
J' 5**	17	35	37	65	40	38	31	36	38	58	59	76	69	52	52	55	52	7.4	17	72	69	25	83	11	18	70	70
N.C.	21	24	30	24	39	47	53	56	62	3	72	73	80	81	89	90	86	99	107	108	116	111	125	126	134	135	142

TABLE 3-1. TESU-FILENCIAL FIRENCHANCE WITH OBSERVED AND CORRECTED EMISSION INDEXES AT IDLE POWER (Continued)

		_		_		_	_	_		_		_							_	_	_		_		_	_	_
260 X E1 X CORR	3.01	4.08	3.16	3.13	2.84	3.00	2.85		3.25	7.91	3.44	3.13	3.38	3.02	3.03	3.05	3.13	3.53	3.06	2.86	2.88	3.24				3.04	.342
TIK F.I CORR	14.91	11.08	13.85	13,00	14.17	10.54	14.68	14.93	13.16	14.61	14.00	12.44	12.69	,	12,43	12.25	11.35	12.49	11.85	10.58	11.41	19.01	12.52	11.85		13.13	1.51
COKR	59.77		59.06	96.09	58.93	80.65	52.32	53.53	59.10	58.62	66.85	73.83	57.37	59.07	61.75	58.96	55.17	60.50	57.78	55.79	56.18	54.15	55.05	55.74		ı	3.66
F/A		,00316	.00315	.00313	.00313	.00315	.00313	61600.	.00312	.00315	00310	.00317	.00310	.00314	.00308	.00370	.00309	.00311	.00312	.00315	.00312	.00313	.00314	.00317		1	ī
F/A CARBON RALABO	.00947	.00734	77600	.00945	.00952	09600*	.01021	.01003	.00922	.00985	.00833	.00885	.00921	59600*	13600.	.00962	59600.	\$1600.	.00933	.01005	.01003	16600.	01000	77600.		ı	-
No. Y 1-1	2,29	3.14	2,44	2,43	2.25	2.40	2.00	96.	2,34	2.20	2.80	2.61	2.61	2.38	1.53	2.26	2.28	2.48	2.54		2.20	1.71		5.29		-	-
ин 1.1	11,07	8.31	9.92	9.28	69.6	7.24	8.96	9.20	9.77		9.88	9.62	8.41	-	5.42	7.59	8.51	9.60	7.34		7.28	17.7	7.68	6.95		,	•
3 🗉	48.02	64.27	46.65	48.03	45.58	45.90	38.87	40.12	47.20	45.78	51.14	57.38	43.84	45.94	31.64	43.15	43.97	48.70	43.70	,	42.0-	27.55	41.11	70.07		•	•
₹ <u>:</u>	2.71	3.70	2.89	2.88	2.67	2.84	2.36	٠	2.78	2.60	3.36	3.08	3.13	2.82	2.67	2.75	2.74	2.98	2.6.2	2.71	2.56	2.91	,	1		2.71	.369
# ::	13.10	9.80	11.73	10.11	11.50	8.56	10,52	10.70	11.64	•	11.86	11.36	10.10	'	9.42	9.24	10.25	11.55	8.45	7.51	8.45	7,53	8.97	8.41		12.24	3.97
8 1	56.84	75.82	55.17	56.95	54.09	54.23	45.64	69.95	56.20	54.28	61,36	67.77	52.66	54.46	55.01	52.52	52.94	58.58	50.30	48.46	78.80	70.72	48.02	48.42		55.60	6.14
COTIF PRESS RATTC	2.664	2.697	2.690	7.691	2.695	2.696	2,650	2.618	2.645	2.678	2.663	2,665	2.664	2.699	2.676	2.644	702.7	2.670	2.636	2.672	2.608	2.643	2.617	2.652		,	•
- ° -	297	260	272	270	272	270	290	087	250	255	272	265	270	265	265	250	240	245	270	270	270	270	275	'		1	ı
FREEST LBS	1038	1058	1054	1055	1057	1048	1032	1002	1043	1038	1058	1039	1059	1060	1067	1068	1068	1063	1012	1034	1016	1037	1022	1074		1	•
FUE: FLOW LBS/HR	876.8	896.8	891.3	8.688	890.7	886.9	879	6,038	975.9	875.5	681.7	879.5	881.4	893.9	883.7	877.4	882.8	883.6	879.1	885.5	875.1	884.3	874.8	887.7		,	-
ME FLOW LES/SEA	,	78.8	78.6	78.9	62	78.3	6.7.	74.9	78.0	77.3	67	"	78.9	79.0	79.7	65.9	79.5	79.0	78.3	78	9.77	78.5	77.4	78.9		1	1
847	1.082	1.083	1.080	1.083	1.080	1.080	1,081	1.081	1.082	1.084	1.080	1.080	1.077	1.082	1.079	1,081	1.080	1.080	1,080	1.080	1.074	1.080	1.081	1.084		1	ı
bat IN Hg A	30.1	30.09	30.22	30.20	30.13	30.11	29.73	29.72	29.83	29.83	30.10	30.07	30.08	30.06	29.87	29.84	29.98	29.98	29.0H	76.67	29.88	29.86	29.73	29.70		1	-
H, CRAINS H, O V LB URY AIR	68.95	66.53	74.02	71.45	74.02	71.45	151.09	127.86	88.10	88.10	59.67	57.52	79.40	74.02	115.62	108.09	74.02	82.21	101.01	104.49	127.86	123.65	136.70	132.21		1	ī
J' 5	20	20	7,4	7,7	78	2	06	36	202	2,6	78	R.Z	78	11	85	85	89	99	90.5	16	16	16	96	91		-	
KUN.	143	151	152	091	161	169	170	178	188	190	191	199	200	208	209	217	218	226	227	235	236	244	245	253		×	S

TABLE A-2. IF 90-FT FRUIN: PLEKEURRANCE WITH OBSERVED AND LORRICTED LITESTON INDEXES AT APPROACH POWER

SON E1 CORR	6.22	6.94	5.90	6.03	5.59	5.21	5.72	5.95	6.38	5.98	6.03	6.11	6.59		•	5.83	5.30	5.12	6.47	5.84	5.89	90.9	5,65	6.10	5.61	6.18	6.18
THE E1 COKE	1.75	19.	1,04	1.51	2.11	.80	.52	92.	79*	68.	09.	2,05	1.33	1	-	1.55	1.14	2.02	.89	1,45	1.49	1,34	1,07	88	.73	1.25	.83
C0 1.1 COKK	13.89	14.16	16.91	14.42	13.43	14.10	12.89	14.62	15,43	14.52	13.85	14.56	14.37	_	_	15.09	15.46	12.92	13.57	15.3;	14.88	15,13	14,56	14.53	12,05	14.51	14.81
F/A	.00440	.00441	.00435	.00440	-	.00440	.00424	,00424	.00411	-	ر	1	ı	.00459	.00461	.60423	.00495	1	1	.00427	.00423	007700	.00452	.00428	,00435	.00430	.00430
F/A CASBON BALABO	,00514	71010.	.01075	.01075	.01163	.01123	.01103	\$5010,	75010.	16010.	06010.	.01102	62010.		•	.01060	71110.	.01278	95110.	.01132	.01132	.01125	.01031	,01126	.01175	.01113	.01113
X 12.7	2.54	2,95	2.69	2.82	61.7	2,53	2,70	2,78	2.99	4.38	4.41	4.75	5.00		-	3.09	2.76	3.82	4.83	3.31	3.21	3.48	3.21	3,43	3.30	3,56	3.56
THK	2.90	1.64	1.36	1.93	1.88	1.14	62.	1.22	10.1	.72	67.	1.02	. 78	_	1	11.11	.88	1,08	87.	.53	-62	.36	.30	.27	.22	.54	.36
3 =	11.34	11.08	10.37	10.11	11.14	9.63	5.81	10.76	10.55	11.47	11.00	10.85	11.12	-	•	9.20	9.58	79.6	10,21	8.22	8.17	1.71	7.38	7.52	7,25	8,29	8.28
e E E	4.35	5.05	4.63	4.11	4.83	4.29	4.66	4.71	91.5	5.59	5.60	5,68	5.95		-	5.30	4.74	4.66	5.84	5.53	5.39	5.71	5.29	5.70	5.47	5,91	16.5
- E	1	2.80	2.34	3.28	2.17	1,95	1.37	2.07	1.75	.92	.62	1.22	.93	-	•	1.90	1.50	1.32	.58	68.	1.04	09.	44.	57.	.36	06.	09.
87	19.61	18.93	17.86	17.14	12.84	16.35	15.19	18.26	18.19	14.63	13.95	12.96	13.25	-	-	15.79	16.43	11.75	12.34	13.72	13.72	12.65	12.17	12,49	11.99	13.76	13.76
COTIL PRESS RATIO	6.274	6.307	6.209	6.275	6.287	6.297	6.272	6.147	6.221	6.308	6.281	6.212	290.9	6,182	6.178	6.170	6.251	6.201	6.276	6.194	6.230	6.384	6,389	6,412	6.388	6,356	6.422
~ °	368	369	420	425	095	425	415	7(16)	415	455	443	495	7 00	·	'	445	435	780	480	470	510	508	508	495	200	895	455
115.05.1 1.85	3879	3889	3806	3826	3763	3855	3861	37	3823	3893	3859	3769	3773	3794	3791	3785	3844	3741	3767	3756	1757	3824	3828	3834	3846	3841	3841
FUL: FLOW LBS/HR	2266	2275	2211	2256		2270	2241	2204	2217	1	,	1	ı	2387	2386	2205	2239	1	•	2251	2237	2330	2322	2312	2325	2314	2311
ATR FLOW LBS/SEC	143	143.3	141.1	142.4	143.1	143.3	146.7	144.4	150	145.9	141.1	145.7	142.2	144.5	143.7	144.8		145.0	146.3	146.5	146.9	147.1	142.8	150	148.5	9.671	149.4
r.P.K	1.320	1,320	1.309	1.312	1.312	1.317	1,319	1.314	1,315	1.311	1.318	1.311	1.310	1.313	1,309	1.314	1.317	1,319	1,326	1.325	1.329	1,336	1.317	1.33	1,330	1.328	1.331
F. Bur IN Hg. A	30.44	30.44	30.24	30.24	29.87	29.89	29.86	86.65	29.80	30.34	30.32	29.86	29.82	29.82	29.84	30.08	30.08	29.89	29.86	29.94	26.62	29.82	29.80	29.84	29.80	29.98	29.98
HOCKAINS HOOV I.B DRY AIR	12.34	14.21	26.89	26.89	74.02	20.59	18.79	10.72	21.54	25.74	28.08	74.02	71.45	33.27	33.27	22.54	22.54	74.02	76.67	64.17	66.53	88.10	94.35	85.11	71.45	47.66	47.66
200	18	23	36	37	65	07	38	31	38	85	58	7.5	70	52	52	53	21	72	7.2	7,5	02	ž	¾	8	81	69	69
KUN NO.	22	23	29	31	35	0,7	97	5,4	63	65	17	74	79	82	88	=	97	100	901	109	115	118	124	127	133	136	141

PABLE A-2. TF30-F1 INCIAE PERIORANCE WITH CUSEKVED AND CORRECTED EMISSION INDEXES AT APPROACH POWER (Continued)

ELI ^X CORR	6.19	6.28	6.26	6.22	5.55	5.95	5.99	5,72	5,74	6.66	6.30	6.17		6.47	6.35	5.33	6.29	6.21	5.99	6.13	6,32	6.11	5.99	6.02	.373	
TIK E.I CORR	.85	.76	96.	.83	1.57	99.	.32		1,08	1.74	68.	.27	1.25	79.	60.	1.60	.58	1.52	.75	66.	.58	1.90	76.	1.06	84.	
CO 1.1 CORR	14.92	13.52	14.36	13.63	14.13	13,05	20,63	19,98	16,18	17.17	15.64	14.63	16.11	10.97	11.39	15.34	15.12	13.47	13.65	13.75	13.64	13.88	13,39	14.47	1.66	
F/A	.00426	.00425	.00424	,00427	.00415	.00420	.00424	.00422	.00425	.00423	.00417	.00418	00440	.00438	٠	.00422	.00414	.00428	.00428	.00424	.00425	.00426	.00430	ı	1	
F/A CASBON BALASICE	.01117	71110.	86110.	.01138	68110.	.01165	.01202	,01229	65110.	.01040	.01040	.01128	.01173	.01208	.01209	.01126	.01127	72110.	.01216	.01183	.01192	06110.	.01203	1	-	
× =	3.37	3,43	3.47	3.45	3.06	3.01	2.96	2.90	3.02	3.78	3.59	3.32	•	3.29	3.23	2.74	3.09	3.54	1	3,22	3.36	3,11	3.07	1	ı	
ΞΞ	.45	.31	.35	.31	67.	.21	80.		.39	95.	.28	60.	50 °	.16	.24	. 70	.26	.34	•	.21	.12	17.	.21	,	-	
31	8.30	7.44	7.71	7.29	7.16	99.9	9.51	9.31	8.59	8.79	7.84	7,38	6.04	5.28	5.43	8.36	8.26	6.38	•	6,42	6.37	6.54	6.34	ı	١	
×_1	5.61	5,75	5.78	5.78	5.27	5.65	5.08	4.97	5.10	6.48	6.25	5.77	'	5.72	5.71	4.71	5.34	6.00	5.68	5.50	5.73	5.31	5.21	5.41	765	
1.1 1.1	.75	.53	.59	.52	.85	.36	71.	٠	99.	76.	84.	.15	.07	.28	.42	1.19	.45	.57	.28	.36	.21	.,11	.35	1.08	1.24	
8 2	13. 1	12.47	12,87	12.22	12.31	11.37	16.34	16.04	14.50	15.07	13.63	12.84	10.45	9.17	97.6	14.35	14.30	10.81	10.96	10,96	10.88	11,14	10.75	13.70	2.54	
COTT PRESS RATEG	6.433	6.436	6,449	6.450	6.261	6.332	6.366	6.334	6.182	6.301	6.239	6.205	,	,	,	6.390	6.360	6.292	6.331	6.307	6.378	6,335	6.338	1	ı	
ا "و "	478	473	760	067	787	475	510	510	795	485	472	'	505	200	067	445	577	200	'	065	485	462	780	1	1	
EMBDS 1 LBS	3837	3839	3845	3876	3834	3836	3892	3892	3773	3837	3841	3842		'	1	3854	3858	3858	3862	3361	3894	3882	3895	1	1	
FUL: FLOW LBS/RR	2306	2291	2304	2314	2279	2248	2265	2261	2236	2237	2209	2203	2446	2433	2481	2245	2228	2277	2279	2362	2291	2278	2296	1	1	
ATK FLOW LBS/SEA	150.5	9.671	150.9	150.4	149.1	148.6	148.4	148.8	140	17.1	147	146.3	154.3	155.1		147.8	149.4	147.9	148	1.8.1	150	148.5	148.4	1	1	
ž	1.327	1.327	1.327	1.329	1.313	1.313	1.324	1.322	1.315	1.317	1.317	1,312	1.347	1,348	1.355	1.315	1.318	1.318	1.322	1.319	1.323	1,321	1.321	,	-	
F. But IN Hg A	30.10	30.09	30.21	30.20	30.13	30.11	29.73	29.72	29 83	30.10	30.08	30.08	30.06	29.86	29.84	29.98	29.97	29.96	29.94	29.88	29.86	29.72	29.71	,	1	
H, GRAINS H _Z O V LB DRY AIR	68.95	66.53	74.02	71.45	74.02	74.02	151.09	136.70	88.10	61.89	57.52	76.67	74.02	115.62	111.79	74.02	85.11	97.63	104.49	127.86	123.65	136,70	136.70	1	,	
الله الله	5.69	20	77	7,4	78	28	92	8	2	77	78	77	77	Z	36	89	66.5	g	8	15	16	96	90	1	1	
KUN NO.	144	150	153	159	162	168	171	177	189	192	198	201	202	210	912	219	225	228	234	237	243	246	252	×	s	

FABLE A-3. TF30-F1 ENGINE PERFORMANCE WITH OBSERVED ARD COURECTED EMISSION INDEXES AT CRUISE POWER

COKR COKR	11.40	11.14	11.10	10.85	11.24	11.33	11.50	17.66	11.85	10.14	11.43	11.38	•	•	10.73	11.24	10.55	12.31	11.24	11.06	11.21	11.28	11.19	10.70	11.51	11.02	11.09
Co F1 COKR	3.13	3,33	3.20	3.26	3.15	3.48	3.04	3.22	3.57	3.05	3.36	3*34		-	3.24	3.23	3.80	3.32	3.27	3.39	3,46	3,15	2.97	3.03	3.31	3.45	3.25
F/A	.00669	.00663	.00673	.00650	.00658	.00650	.00653	.00612	87900*	.00652	.00654	.00653	.00648	.00647	.00637	.00654	.00679	.00677	.00663	.00674	.00676	.00675	.00663	.00682	.00676	.00635	.00645
F/A CARBON BALABU	.01421	.01507	.1707	.01423	.01432	.01328	.01407	.01266	.01365	.01605	.01511	.01488	1	-	965.0.	.01417	в6510.	.01468	.01539	.01568	.01532	91910.	.01592	.01625	.01547	.01489	11510.
8 E	5.01	5.47	5.53	5.00	5.17	4.82	4.83	5.14	6.27	5.31	6.10	6.07		•	5.57	5.71	5.77	6,58	6.24	5.98	07.9	67.9	6.36	8.40	6.65	5.99	6.07
Ĭ.E	.55	.32	5	-54	.20	.22	.20	.21	,14	90.	.32	24.	٠	,	.32	.34	.32	.07	01.	.53	.13	.03	.03	90.	70.	01.	.07
00 P.1	2,41	1.88	1.77	2,33	2.28	2.81	2.47	2.36	2.06	62	1.63	1.62	'	•	1.96	1.98	1.97	1.76	1.67	1.77	1.67	1.53	1.46	1.49	1.81	1.85	1.75
NO F.1	8.61	9.41	9.52	8.71	8.99	8.48	8.46	9.07	10.97	9.25	10.66	10.01	'	1	9.70	10.00	9.62	10,98	10.47	10.08	10. ,2	13.48	0.43	10.43	10.94	96.6	10.09
FT FT	.95	.56	87.	.95	.35	.38	.36	.37	.25	.10	. 56	.79	ı	_'	. 56	. 59	.53	11.	.16	.90	.22	• 05	.05	.10	.11	.17	11.
8.1	4.13	3.23	3.04	4.06	3.97	76.7	4.32	4.16	3.61	3.12	2,85	2.83			3.42	3.48	3,29	2.93	2.80	2.99	2.74	2.47	2,40	2,42	2.98	3.08	2.90
COTIF PRESS RATIC	11.15	11.13	11.30	10.99	12.80	10.99	11.02	11.05	11.04	10.99	11.12	11.02	11.06	11.09	10.97	11.13	11.10	11.35	11.39	11.40	11.40	11.7	11.66	11.68	11.75	11.26	11.23
ر ا ا	570	970	637	592	590	550	555	570	615	615	685	675	·	'	620	630	670	670	099	680	683	700	069	705	650	969	650
THRUST	8239	8231	2178	8140	8154	8165	8165	8161	5919	8190	8279	8282	8196	8: 01		8206	8242	8190	8329	8338	8236	8222	8333	8345	8361	7949	1950
FUL: FLOW LBS/HR	4799	4744	4887	7674	7697	1797	1995	4625	4667	4764	4737	4739	4702	9695	4703	7897	4943	1165	7967	1567	5012	5092	5643	5130	5080	4782	47.30
alk Flow LBS/SEC	195.3	200.3	201.6	199.8	198	198.4	198.4	216.1	200.0	200.3	201.2	201.5	201.6	201.7	205.0	198.9	202.1	201.6	207.9	204.1	205.9	209.6	213	208.9	208.8	209.2	206.1
ядт	1.744	1.740	1.754	1.730	1.734	1.731	1.734	1.733	1.740	1.735	1.746	1.742	1.739	1.739	1.738	1.742	1.778	1.789	1.807	1.808	1.804	1.814	1.796	1.798	1,7999	1.752	1.752
Eur IN Hg A	30.24	29.91	29.88	29.85	29.87	29.98	29.98	29.55	30.34	30.32	29.84	29.82	29.82	29.84	30.08	30.08	29.88	29.87	76,62	29.62	29.82	29.80	29.84	29.80	29.98	30,10	30,10
H, GRAINS H2O V LB DRY AIR	26.89	71.45	71.45	20.59	18.79	10.72	10.72	22.54	25.74	28.08	71.45	71.45	33.27	33.27	22.54	22.54	74.02	76.67	68.45	68.95	83.10	94.35	85.11	71.45	7.66	68.95	66.53
J. 5	35	62	3	39	38	28	28	9	58	57	75	75	51	51	54	52	73	71	74	71	82	3	38	2	69	20	70
KEN No.	28	32	33	41	45	87	20	5.9	99	70	75	77	63	87	92	96	101	105	110	114	119	123	128	132	140	145	149

TABLE A-3. TF30-P1 ENGINE PERFORMANCE WITH OBSERVED AND CORRECTED EMISSION INDEXES AT CRUISE POWER (Continued)

IW)X EIX CORR	11.37	11.35	10.71	10.83	•	10.81	10.63	10.56	12.73	11.88	10.96	10.60	10.39	11.43	11.31	11.30	11.21	10.90	11.67	11.60	11.49	11 22		11.34	1,14	
CO COKK	3.51	3.46	3.37	3.26	5.74	3.31	3.34	3.37	7.00	3.81	3.19	2.96	2.80	3	3.06	4.28	3.01	3.25	3.20	3,11	3.16	3.12		3,35	0,446	
F/A	.00632	.006.71	. 40624	.00643	.00641	.00648	.00640	67900	.00634	.00673	.00638	.00647	.00634	.00647	.00638	07900*	.00645	.00662	, 10641	95900*	97900	,006€		ı	1	
F/ CARBON BAI ABCI	.01459	.01488	.01569	.01569	.00947	.01592	.01567	.01567	.01358	.01404	.01536	.01537	.01613	.01569	0,482	.01506	.01597	.01654	,01604	.01617	.01628	,01628		1	ı	
NO.X	24	6.35	5.75	5.91	9.06	5.42	3,92	5.93	7.13	\$.6	5.88	5.73	5.32	5.90	5,59	5.49	6.29	í	5.19	6.13	5.78	5.69		ı	-	
THC	71.	.14	60.	٠	1	-	٠		111.	.07	90.	,	60.	60.	01.		60.	'	90.	.03	.12	•06		1	_	
CO P1	1.81	1.79	1.60	1.54	2,42	1,40	1.51	1.51	1.88	1.80	1.53	1.42	1.24	1.36	1.62	2.22	1.28		1,34	1.34	1.34	1,33	*	ı	1	
% 1.1	10.38	10.50	10.07	10.25	٠	9.42	10.29	10.29	12.45	11.62	10.23	9.96	9.25	10.28	9.78	9.63	10.86	10,36	10.56	19.47	10.01	9,78		10,18	5171	
IIK. E1	.23	.23	.16	1	•	•		,	61.	.12	.11	•	.16	.16	11.	-	.16	. 10	.11	50,	.21	.10		1	l.	
8 1	3.01	2.96	2.80	2.6+	4.21	2.43	2.62	2.62	3.29	3.14	2.65	2.46	2.15	2.36	2.84	3.90	2.21	2.38	2,30	2.28	2.32	2,29		3.02	99.9	
CORP FRESS KATIG	11.26	11.27	11.77	11,29	11.19	11.19	11.22	11.20	11.17	11.24	11.34	11.12	11.22	11.22	11,25	11.29	11.26	11.42	11.28	11.25	11.30	11,34		ı	ı	
7 94	670	658	655	999	705	069	662	655	099	099		670	650	650	620	079	590	1	670	665	680	670		ı	1	
THREST	7925	7927	8298	8300	8322	8321	8357	8368	8278	83:1	8368	8226	8290	8283	8363	8352	8360	8360	8383	8367	8432	8452			ı	
FUEL FLOW LBs/HK	4762	4793	4741	4779	4786	4785	4805	4825	4744	4748	4813	4732	4765	4756	4783	7917	4840	4926	4822	4826	4868	4920		-	ı	
AIR FLOW LBS/SEC	209.4	204.6	209.5	206.5	207.4	205.1	208.6	206.6	208	196	209.6	203.2	208.7	204.3	208.3	206.9	208.4	206.8	209.1	204.5	209.4	206		1	1	
EF	1.745	1.747	1.741	1.742	1,752	1.755	1.756	1.759	1.746	1.750	1.747	1.732	1.740	1	1.746	1.750	1.750	1.763	1.748	1.745	1.756	1.759		,	,	
Bar IN Hg A	30.21	30.20	30.13	30.12	29.72	29.72	29.75	29.74	30.09	30.38	30.08	30.06	29.86	29.85	29.98	29.97	29.96	29.95	29.88	29.86	29.72	29.71		ı	1	
H, GRAINS L, H20 VP LB	76.67	71.45	74.02	74.02	141.34	136.70	79.40	79.40	61.89	61.89	76.67	74.02	115.62	111.79	74.02	85.11	97.63	104.49	127.86	123.65	136.70	136.70		1	١	
210	7.4	7,7	11	78	90	90	22	ž	7.8	78	77	77	85	85	99	89	90	06	92	S	8	8		1	1	
KUN No.	154	158	163	167	172	176	181	185	193	197	202	204	211	215	220	224	229	233	238	242	247	251		×	S	

TABLE A-4. TEJU-FT ENGINE PLRICHMANCE WITH OBSERVED AND CORRECTED EMISSION INDEXES AT MAXIMIN CONTINUALS MAKE

ES ×	13.80	12.89	12.81	13.27	13,37	12.57	13.25	13.65	14.03	13.35	14.00	13.98	12.96	13.73	1	,	13.30	13.13	13.24	13.97	13,78	13.12	14.09	13.82	13.03	13.03	14.22
<u>.</u>	-		36	├-	-	37	27	2,5	30	2.29	53	62	2.54	2,55		-	2,45	2.36	2.40	2.58	2,42	2.36	2,42	2.44	2.03	2.09	2.37
8 = 8	2.25	2.62	2,36	2.37	2.37	2.37	2.27	2.40	2.30	2	2.53	2,62	2.	2.			2.		2.	2.			2.				2.
F/A	.00762	1693	.00766	.00746	.00750	. 56743	.00744	67200.	-0706	.04716	.00713	.00736	.00740	76700.	.00733	.00740	16700.	.00729	.00779	15200.	.00784	.00775	.00788	.00/92	69200.	89200	17700.
F/A CARBON BALARGE	.01537	3910.	67910.	.01557	.01580	.01551	.01568	.01565	101486	.01547	.01547	.01502	.01623	01570	,	,	86510.	57510.	11710.	.01632	.01712	.01744	.01766	.01766	.01775	.01802	.01693
X 14	6.35	60.9	6.58	6.41	6.33	5.78	6.05	6.24	6,49	6.25	6.51	7.55	66.9	7.20	1	ï	06.9	68*9	7.35	72.57	7.49	7.33	7.74	7.60	2.75	7.80	8.46
ĚΞ	.17	.61	8	.38	.25	51.	61.	.39	.26	.19	.13	-03	.06	.31	٠		.45	.38	,25	.19	.10	.03	90.	.03	€0°	.03	.13
50	1.70	1.35	1.29	1.72	1,70	1.90	1.82	1.80	1.74	1.67	1.84	1.55	1.50	1.32		•	1.54	1.48	1.33	1.38	1,32	1.29	1.22	1.22	1.06	1.08	1.37
N X II	10.40	11.05	11,05	10,87	10.71	9.88	10.33	10.78	11.16	10.73	11,25	12.87	11.93	12.32	•	-	11.85	11.78	11.80	12.36	12.07	11.85	12.3.	12.17	12.29	12.37	13.35
11K	1,32	1.11	1,31	ç9·	64.	.22	.32	.67	:45	.33	.2.	н.	.10	.54	•	•	77.	79.	.39	.31	.15	.05	.10	.05	ن٥.	.05	.20
3 7	2,89	2.45	2.17	2,92	2,68	3.24	3.10	3.08	2.99	88.	3.18	75.7	2.56	2.26	•	٠	2.65	2.52	2.13	2.29	2,13	2.09	1.95	1.95	1.68	17.1	2.16
COTIF PRESS RALIC	12.99	12.87	12.88	12.86	12.86	12.81	12.77	12.84	12.85	12.87	12.84	12.73	12.70	12.79	1. 82	12.82	12.75	12.72	12.87	12.84	13.18	13.15	13.17	13.17	13.43	13.51	13.50
ے '۔	645	069	700	949	079	009	900	625	620	630	630	715	585	725	'	٠	099	999	715	710	715	705	744	750	735	750	705
LBS	9978	0986	0266	9836	9842	9845	7726	9839	9881	987-	9877	7086	-1.6	9825	9817	9814	777.6	9780	9605	4554	9833	9843	9885	9871	9806	9854	9873
FUE. FLOW LBS/HR	5867	5437	5937	5801	5812	5762	5707	57~7	5741	5746	5713	5740	5720	5741	5742	5761	5697	5719	5984	5777	6105	6087	6195	6192	6185	6215	6257
AIR FLOW UBS/SEC	213.9	217.9	215.3	6.515	215.2	215.5	213.1	219	225.9	222.5	222.6	216.9	214.7	216.5	217.6	216.3	215.4	217.3	213.5	213.7	216.2	218.2	218.4	1.712	223.5	224.7	225.5
i i	1.926	1.914	1.918	1.913	1.9.0	1. 409	1.902	1.911	1.910	1.912	1.914	1.904	1.904	1.905	1.909	1.908	1.901	1,904	1.958	1,958	1.989	1.987	1,994	1.998	1.960	1.967	1.971
F. Bar IN IN	30.24	29.87	29.86	29.86	29.87	29.98	86.72	29.94	29.35	29.65	. 29.65	30.34	30.32	29.82	29.83	29.83	30.08	30.08	29.86	29.87	29.94	29.93	29.81	29.80	29.83	29.82	29.98
H, CPAINS 1. Had VP LB	25.74	74.02	76,67	19.61	19.67	10.72	10.72	22,54	22.54	21.54	21.54	25.08	28.08	71.45	33.27	33.27	22.54	22.54	74.02	76.67	68.95	68.95	94.35	94.35	71.45	71.45	47.66
그 그 그	34	99	89	38	38	28	28	35	35	35	95	58	58	7.5	51	51	51	52	72	72	73	72	83	¥	ü	18	69
KUN No.	27	8	38	42	7,7	67	51	57	200	3	19	67	69	78	¥	86	93	26	102	104	111	113	120	122	129	ī	137

TESO-PT FUGURE PERFORMANCE WITH OBSERVEL AND CORRECTED ENLSSION INDEXES AT MAXIMUM COST WINDS FOWER (CONTINUED) 1 ABI 1 A-4.

SIE N	14.63	13.87	13.55	14.42	13.72	13.34	13.35	11.97	12.23	12.87	12.62	15.22	14.80	13.74	13.38	13.84	13.24	13.33	13.05	13.79	13.74	14.25	14.15	14.43	14.76	
COKK	2.46	2,44	2.44	2.44	2.33	2.44	2.44	2.49	2.41	2.34	2.46	2.98	2.88	2.07	2.07	2.19	2.25	•	1	2.08	2.28	2.42	2.33	2.37	2.32	
F/A	.00768	.00737	.00739	.00736	.00742	.00733	.00741	B 7400	. 00742	7£700.	.00741	76700.	.00732	.00734	76700.	.00736	.00736	.00734	.00735	.00747	.00745	.00750	.00744	.00757	.00759	
F/A CARBON RALARCE M	.01693	95910.	.01658	.01623	.01657	.01716	81710.	.01756	.01607	.01735	.01758	.0110.	.01495	.01673	.01673	.01703	ر4210°.	.01652	.01685	.01757	.01830	.01748	.01793	.01807	97710.	
ox =	8.72	7.73	7.57	8.02	7.76	7.24	7.39	5.01	90.9	7.11	7.04	8.52	8.26	7.30	7.23	7.33	6.75	6.68	6.65	7.54	302.7	7.31	7.26	7.28	7.46	_
111	.12	90.	90.	.10	:13	90.	.03	ŧ			,	ol.	90.	90.		.31	80.	.03	90.	.06	2.22	.03	.03	80.	60.	
3 =	1.46	1.37	1,37	1.32	1.26	1.22	1 20	1.11	1.08	1:1	1.16	1,47	1.4.1	1.03	1.04	1.10	1.(5	1.76	65.7	76.	41.71	1.07	1.02	1.06	1.06	
NO F.1	13.82	12.45	12.16	12.92	12.47	12.22	12.50	9.93	10.28	12.10	11.94	14.55	14.15	12.54	12.30	11.80	11.48	11.35	11.26	12.64	12.59	12.48	12.39	12.20	12.40	
1.1R L.3	07.	.10	. 10	-10	.20	01.	.05	-	,	'	1	28	.11	.10	•	.50	.14	.05	01.	.10	60	50.	50.	.14	71.	
51	2,22	2.20	2.20	2.13	2.03	2.06	2.06	1.89	1.83	1.88	1.96	2.51	24.2	1.76	1.76	1.76	1.80		ı	1,58	1.73	1.82	1.75	1 78	1.76	
FREDS RATE	13.54	13.05	13.01	13.07	13.07	13.00	13.04	12.86	12.8.	12.92	12,86	12,95	13.02	13.08	12.91	12,92	12.85	13.11	13.05	13.05	13.12	12.99	13.16	13.17	13.21	
- ° 5 **	706	705	705	726	128	720	710	750	745	710	710	715	717	'	715	710	705	069	069	730	'	725	720	720	720	
1135b51 185	9876	8758	4428	6556	9448	9924	9927	9925	9924	7/86	1881	9939	9939	9960	9957	9179	9931	8866	0666	1866	10003	10014	10056	10100	10106	
FBEJ FLOW LES/JIR	6228	5854	5872	5867	5878	5880	5871	5831	5846	3806	5827	5821	5800	5846	5852	5825	5837	5878	2900	5955	5996	5958	5971	6027	6079	
514 ELOW LB5/5Ec	225.3	220.7	220.8	221.4	220.1	222.7	220.2	216.6	219.0	218.7	218.3	203	220	221.3	::20.5	219.9	220.2	222.4	222.9	221.4	223.6	320.6	223	221.1	222.6	
ž	1.972	1.917	1.917	1.917	1.917	1.909	1.909	1.919	1.919	1.918	1.919	1.917	1.921	1.914	1.976	1,905	1.908	1.912	1.915	1.919	1.923	1.918	1.929	1.932	1.936	
bar IN Hg A	29.98	30.10	30.10	30.20	30.21	30.12	30.12	29.72	29.72	29.75	29.75	30.08	30.08	30.07	30.06	29.85	29.85	29.98	19.97	29.95	29.95	29.87	29.86	29.72	29.72	
H, GRAINS Hot VP LB ORY ALP	47.66	66.53	66.53	76.67	71.45	76.67	76.67	141.34	136.70	79.40	79.40	61.89	61.89	76.67	74.02	115.62	111.79	74.02	74.02	104.49	104.49	123.65	123.65	136.70	136.70	_
215	70	20	2	7,	7,4	77.5	77.5	£	0,6	83	ž	78	78	11	77	63	75	65	67	96	96	91	16	16	90	
KUN NO.	139	971	148	155	157	164	166	173	175	182	75	194	196	203	205	212	214	127	223	230	232	239	241	248	250	

TABLE A-4. TESO-FI ENGINE PERFORMANCE WITH OBSERVLD AND CORRECTED FINESKOR INDEALS AT MANIBUS CONTINUOUS FOWER (CONTINUOUS

			 	 	 _	 	 _	,	_	 		_	,		_	_	_	
NO. E.I. CORR	13.56	.657																
CO F1 CORR	2.39	921.0																
P/A	1																	
F/A CARBON BALANCE	1	1																
N I d	ı	1																
# 1.1	,	-																
3.7	1	1																
3.1 *	11.94	982																
Ĕï	,	1																
3 7	2,30	356																
cott: Press RATIC	ì	1																
~ ° °	•	-																
THRUST	-	-																
FUEL FLOW LBS/BR	1	1																
	1	1																
3.14	•	'																
IS A	,	,																
H, GRAINS I' C, H20 WP LB BAT O DEY AIR HR A	,	,																
3' 2"	,	,	\neg															
Ž, K	ı×	S																

TABLE A-5. TEMP-PLENGINE PERFORMANCE WITH OBSERVED AND CORRECTED EMISSION INDEXES AT TARLOFF FORER

.00836 2.12 .00846 2.41 .00826 2.12 .00823 1.90	.00836 2.12 .00846 2.41 .00826 2.12 .00823 1.90 .00818 2.28 .00810 - .00813 2.00	.00836 2.12 .00846 2.41 .00826 2.12 .00823 1.90 .00818 2.28 .00819 2.21 .00810 - .00813 2.00 .00829 2.05 .00851 2.08 .00880 2.17 .00880 2.17	.00836 2.12 .00846 2.41 .00826 2.12 .00823 1.90 .00819 2.21 .00810	.00836 2.12 .00846 2.41 .00826 2.12 .00823 1.90 .00819 2.21 .0081000819 .00819 2.05 .0081000 .00811 2.00 .00804 2.05 .00805 2.07 .00805 2.07 .00806 2.05 .00806 2.05	.00836 2.12 .00846 2.41 .00826 2.12 .00813 1.90 .00819 2.21 .0081000810 .0081000810 .0081000810 .0081000 .0083 2.05 .00843 1.94 .00843 1.94 .00805 2.05 .00806 2.05 .00806 2.05 .00816 2.01
76210. 77310. 77310.	76210. 76310. 77310. 76310. 70310. 98710.	76210. 76310. 76310. 76310. 76510. 76510. 76510. 76510. 76610. 76610. 76610. 76610.	76210. 77310.	76210. 7610. 7	76210. 77310.
7.23 8.11 7.15 7.12 8.94	8.11 7.15 7.15 7.12 8.94 8.16 7.55	8.11 7.15 7.15 7.12 8.94 8.16 8.16 8.23 8.23 8.70 8.70	8.11 7.15 7.12 7.12 8.94 8.16 8.23 8.23 8.23 8.23 8.23 8.28 9.10 9.50 9.14	7.23 8.11 7.15 7.12 7.12 7.12 8.23 8.23 8.23 8.23 8.25 9.50 9.50 9.14 8.25 7.60	8.11 7.15 7.12 7.12 7.12 8.94 8.16 8.23 8.23 8.23 8.23 8.28 9.14 8.28 7.60 7.60
,74 81. 11	24, 24, 28, 21, 18, 28, 27, 28, 27, 28, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27	24, 24, 281. 13	24, 24, 24, 24, 24, 24, 24, 24, 24, 24,	24. 24. 24. 25. 25. 26. 27. 27. 29. 29. 29. 20. 20. 20. 20. 20. 20. 20. 20. 20. 20	2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
38 8 3					
.30		20	20. 12. 14. 47. 47. 49. 60. 60. 60. 60. 60. 60. 60. 60. 60. 60	12. 12. 47. 49. 90. 90. 90. 11. 71. 71. 71.	12. 12. 47. 48. 90. 90. 101. 11. 11. 11.
+-+-		01 08 20 23 23 28 08 08	8 2 2 2 8 8 2 2 3 8		
11169	1116 11116 111120 11152 10303	11169 11116 11152 11152 10303 10821 10810	11169 11116 11120 11152 10303 10921 10865 10865 10865 10810 11051 10552 10416 11053	11116 11116 111152 10303 10921 10865 10865 10810 11051 11051 11115 11115 11115	11169 11116 111152 10303 10921 10865 10865 10865 10810 11051 11053 111053 111097
-	223.6 6669 229.1 6707 220.4 6580				
2.010	2.048 2.050 2.049	2.050 2.050 2.049 2.115 2.109 2.069	2.048 2.050 2.049 2.115 2.109 2.069 2.097 2.025 2.027 2.043	2.048 2.050 2.049 2.115 2.049 2.043 2.025 2.025 2.043	2.048 2.050 2.049 2.115 2.109 2.049 2.025 2.025 2.027 2.043 2.043 2.032 2.043 2.032 2.043
1.43	22,54 30,08 74,02 29,88				
_	51 71.45 51 33.27 51 22.54 72 74.02				
!	52 25	38 38 38 38	77 77 73 30 77 77 77 77 77 77 77 77 77 77 77 77 77	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	200 100 100 100 100 100 100 100 100 100

TABLE A-5. TF 30-PT ENGINE PLEFORMANCE WITH OBSSERVED AND CORRECTED PHISSION INDEXES AT TAREOFF POWER (Continued)

NOX E1X CORR	14.86	15.86	16.54	16.09		15.49	1.01	1.01										
CO F.1 CUKR	2.03	2.12	2.04			2.06	0.16	91.0										
F/A MLASURED	.00802	.00814	.00814	.00822		1	1											
F/A CARBON RALANCE	.01742	67810.	.01882	.01879		1	1											
NO. P.I.X	7.62	8.53	8.:1	7.83		-	1											
H 12	.03	.05	.03	.05		-	-											
3.3	1.16	1.05	.97	1.00		1	1	Ĭ										
8.3	12.63	13.99	13.85	13.01		13.53	1.12											
) ii	.05	60.	70.	60.		ı	1											
3.7	1.93	1.72	1.66	1.66		1.92	. 300											
r offi PRESS RATIO	14.23	14.15	14.17	14.24		ı	1				_							
ຸ້ ວ ້	720	765	760	760		1	_			-								
rindes i LBS	11017	11037	11064	11103		,	-		•									
1 U.C.1 1 T.O.W 1 BS / NR	9799	08.29	6740	6767		1	ı											
AIR FLOW LBS/SE	230.2	229.7	230	228.6		,												
1 Ph	2.020	2.028	2.027	2.035		1	1											
f 641 IN Hg A	29.98	29.95	29.87	29.72		,	1											
H. GRAINS F L. HOO VP LB 6411 C. FRY ATR IN B. A	74.02	104.49	123.65	136.70		1	ı											
二五 至 年 11 5世	99	06	06	96		ı	ı			 				 				
KUN NO.	222	231	047	549		×	.v.											

TABLE A-6. TIBD-11 ENGINE PERFORMANCE WITH OBSERVED AND CORRECTED EMISSION INDEXES AT IDLE POWER

	1				Ī		·		_	Γ.	-					<u> </u>		_			_		1	r –	T	T	Т
EIX CORR	ı	3.08	3.31	3.25	3.05	3.19	3.40	3.21	3.09	1	•	,	3.15	1	1	3.02	3.27	1	3,10	3.19		3.16	.128				
THC E1 CORR		10.84	8.68	8.08	10.55	11.46	69.6	10.40	66.6	1	1	_	11.19	ı	1	11.83	10.02	1	10.62	9.32		10.21	1.08				
CO 1.1 CORR	42.39	44.01	39.44	37.39	42.86	89.97	42.86	40.41	40.37	45.13	43.05	43.54	43.12	66.07	37.75		41.52	43.06	67.17	39.05		41.85	2.40				
F/A	-	-	-	1	,	.00396	.00302	.00342	.00341	.00312	.00370	.00341	.00359	331	950 ~*	.00316	.00359	.00359	.00368	.00296		_					
F/A CARBON BALABCI	.00743	86700.	.00788	.00787	\$6700.	.00755	.00732	67700.	.00768	.00776	.00753	.00741	.00754				.00712	\$\$600.	.00712	.00732		,	1				
× 14	1	3.72	3.65	3.61	3.66	3.51	3.11	3.58	3.40	1	,	1	2.54	-	1	3.65	5.69	2.21	2.25	2.95		1	ı			 	
14th	-	9.53	7.92	7.70	10.95	13.62	11.24	10.90	10.30	1	1	1	13.49	ı	1	13.88	13.71	1	14.53	11.86		1	•				
0 I	57.38	53.98	46.05	43.20	56.95	65.64	48.68	51.12	50.25	57.57	58.61	53.13	47.47	48.80	51.94	-	79.40	47.40	43.64	50.64		1	1				
NO 4.1.1	1	2.81	2.95	2.95	2.73	2.71	2.94	2.B6	2.76	1	ı	1	2.54	1	1	2.57	2.60	•	2.47	2.59		2.73	991.				
Li	1	9.59	7.94	7.39	11.05	13.83	11.42	10.49	10.46	1	1	١	14.01	'	ı	13.13	13.68	-	14.50	12.41		11.56	2.31				
5.5	43.19	41.85	38.01	36.04	43.67	50.42	45.84	41.18	41.14	45.99	10.95	45.89	47.2H	47.31	40.98	1	47.18	48.93	47.15	43.92		44.31	3.73				
coff PRESS RATTG	1.297	1.302	1.336	1.370	1.312	1,312	1.411	1.306	1.299	1.305	1		1	ı	•	-	'	•	'	'		ı	ì				
ر م م	145	170	175	180	700	185	507	31.7	210	200	200	,	180	180	200	215	180	180	180	180		1	ı				
THRUST LBS	143	762	818	865	753	755	923	804	804	763	774	678	616	186	782	755	976	1055	1103	850		1	,				
FUL: FLOW LBS/HR	987	983	166	1037	982	983	980	998	982	955	986	983	983	1012	166	1068	1020	1022	1021	980		ı	1				
AIR FLOW LBS/SEC	1	-	,	,	1	69	90	81	80	85	74	960	76	85	8.2	36	79	79	11	92		1	1				
LPh	1,041	1.042	1.042	1.042	1.042	1.041	1.041	1.041	1.041	1,033	1,033	1.024	1.042	1.042	1.033	1.028	1.040	1.040	1.040	1.059		١	,				
F Bat IN Hg A	30.56	30.06	30.06	30.02	29.98	30.46	30.00	30.08	30.08	30.14	30.30	30.28	29.81	30.06	30.16	29.84	30.14	30.14	30.14	29.85		,	1				
H, CRAINS H ₂ O VP LB DRY AIR	20	3	3	58	30	15	71	31	31	36	27	25	25	15	12	30	80	30	80	,		1	ı				
J' 5 [#]	55	ő	67	67	55	43	45	55	55	55	45	87	07	30	42	8	33	33	33	35		•	,				Ц
KES.		7	б	4	~	12	23	24	25	30	31	07	41	97	52	57	59	9	19	76		×	S				

A-1:

IABLE A-7. JIBD-11 ENGINE PERFORMACE WITH OBSERVED AND CORRECTED EMISSION INDEXES AT APPROACH POWER

FO.X COKR	_	8.22	8.18	7.86	10.6	8.66	1	i	'	2,38	ı	_	8.95	1	8.46	.42					
TIK. F.I. COKR	•	.36	97.	.40	.31	.38	1	.54	79.	38.	_	41	.26	_	96.	71.					
S I S	6.74	7.12	7.03	6.76	6.11	7.53	7.66	-	•	7.51	8.16	7.48	7.85	7.19	7.30	65.					
F/A	.00427	.00396	.00402	.00402	.00425	.00400	.00400	ı	1	.00418	.00417	.00416	.00386	.00382	1	_					
F/A CARBON BALABOE	.00854	.00845	97800.	98800.	.00895	.00848	.00814	-	-	.00804	.00952	.00814	.00828	95600.	ı	ı					
S 4	4.32	.11	4.28	60.7	4.46	3.82	-	5.03	4.58	3,68	1	3.75	70.7	, ,	ı	1					
ă I	.280	.340	.31	-2-	٦	07.	-	07.	.54	.63	-	.65	.39	1	1	1					
3 =	4.060	4.611	4.197	3.997	3, 7.9	5.033	5.431	_	1	5.532	6.057	5,469	5.002	5.124	ı	(
ž.:		7,10	7.32	7.8	7.74	7.02	ı	8.30	ſ	97.0	1	6.58	7.09	١	7.182	. 530					
# 11		.58	.53	97.	.45	.74	1	99.	7.17	1.10	1	1.14	69.	•	.720	.245					
E 6	6.943	7.936	7.246	6.971	6.653	9.198	9.653	ł	.85	9.538	10.36	9.425	9.719	8.910	8.546	1,311					
COTIF PRESS KATIC	1	1	,	1	7.636	7,225	7,080	7.404	7.307	6.967	6.898	6.898	7.168	7.103	1	ı					
~~ °	027	097	780	780	,	077	435	475	405	440	055	777	055	740	,	ı					
THRUST	5151	5124	5319	5321	5717	5558	5373	5125	4779	5290	5237	5237	5260	5190	1	ı					
FUE! FLOW LBS/HR	3012	2977	3081	3065	3290	304.1	3023	3090	3036	3068	3063	3039	3032	2985	,						
AIR FLOW LBS/SEC	961	209	213	212	215	211	210	1	'	204	204	203	218	217	,	,					
EPK	1.354	1.304	1,308	1.308	1,323	1.302	1.300	1.281	1,255	1.285	1.285	1,282	1.303	1,303	,	,					
P Bar IN Hs A	29.98	30,45	30,14	30.14	30.28	29.36	30.065	30.04	29.95	30.14	30.14	30.14	29.45	29.45	1	1					
H.GRAINS L. H2O VP LE	30	15	30	30	25	2.5	15	20	77,	80	30	80	,	,	1	1					
2, 2	55	45	55	55	87	0,7	õ	53	20	23	29	20	32	32	1	1					
KUN NO.	80	15	26	27	39	77	47	55	26	65	99	29	96	91	×	s					

TABLE A-8. JTGD-11 ENGINE PERFORMANCE WITH OBSERVED AND GRECTED EMISSION INDEXES AT MAXIMUM CONTINUOUS POWER

HOX E1X CORR	18.39	18.35	18.71	18.94	,	18.80	1		18.64	.26									
CO E1 COBB	1.08	76.0	76.0	98.	8	.55	79.		.85	161.									
F/A CARBON BALARCE	.01261	,01283	.01283	.01246	76510	.01246	.01369		1	ı					ı				
X I d	9.17	8,96	90.6	8.29	-	8.50	ı		1	1									
									ŧ	١									
CO F1	.7044	.6214	9919.	.6419	.6668	.3922	.4693		١	ı									
NC EI x	16.08	15.72	16.03	15.10	1	15.49	1		15.68	07.									
									1	í									
00 E1	1.233	1.091	1.091	1.149	1.194	.7048	.8355		1.043	.197									
COMP PRESS RATIC	•	13,891	13.904	13.786	13.891	13.847	13.885		ı					1					
1 0 2 34	079	650	,	909	009	610	610		1	ţ									
THRUST	12647	12993	13107	12865	12920	12925	12981		ı	1									
FUE. FLOW LBS/HR	7226	7399	7407	7189	7215	7192	7291		1	1									
AIR FLOW LBS/SEC	303.5	307	306	303	305	304	303		ı	ı									
FPK	1.879	1.899	1.892	1.885	1.885	1.887	1.888		1	1									
Fair IN Hg A	30.44	30.30	30,29	30.00	30.00	29.87	29.87		1	ı									
H, GPAINS H, U V LB DRY AIR	71	27	27	•	30	,			•	,									
21 2	45	47	1.5	9	3	35	32	\exists		1									
KUN NO.	77	33	×	78	79	35	85		١×	S									

TABLE A-9. ITBD-11 ENGINE PERFURMANCE WITH OBSERVED AND CORRECTED PRINCESTON INDEXES AT TAREOFF POWER

EI X	19.96	22.67	21.27	21.90	ı	21.64	'	21.39	1	21.47	68.									
CO FT COKR	87.	.72	.83	67.	98.	99.	89.	.41	.37	99.	- 18									
F/A	6.700.	.00784	.00755	.00753	.00744	.00739	.00748	.00747	.00756	1	1						-			
F/A CALBON HALABOL	.01340	.01459	.01384	.01369	.01340	.01384	.01480	£2£10.	.01470	-	1	•								_
NO. X	10.3	11.99	10.58	10.78	١	10.26	١	10.58	1	_	ı									
31	7667	.4751	. 5628	.5295	.6230	. +801	4905	.2868	.2677	1	1									
NO K.1.	17.79	19.74	17.94	18.52	•	17.97	1	18.35	-	18.58	.72									
8.3	8098.	.7824	6876.	.9037	1.067	.8263	.8362	0165.	.4534	.7466	.2018	_								
COSTE PRESS KALLIC		15.904	15.480	15.623	15.430	15.435	15.459	15.590	15.585	1	1									
	670	710	1	050	650	500	665	665	599	ı	1									
INKUS) LBS	13955	14921	14718	14900	14626	14562	14602	14683	14708	1	1									
FUL! FLOW 1.85/HK	8097	0906	8730	8730	8549	84.85	8566	8575	8684	ţ	1									
AIR FLOW LBS/SEC	313	321	321	322	319	319	318	319	319	ı	(
EPIK	1.979	2.083	2.046	2.064	2.038	2.048	2.047	2.049	2.049	ı	(
LB IN Hg A	30.44	30,30	29.84	29.36	29.97	26.67	29.92	29.87	29.87	1	-									
H, GRAINS H2O V LB DRY AIR	14	27	24	23	15	20	7	7	7	1	•									
315	45	4.7	0,7	0,4	30	30	32	35	32											
KEN NO.	22	32	42	4.5	51	80	81	82	83	×	S									

TABLE A-10.

157-43 ENGINE PERPUNHANUE WITH OBSERVED AND CORRECTED EMISSION INDEXES AT IDLE POWER

	_			_	_		r –	<u> </u>															_	_	г	_	$\overline{}$
FI K		, ,	3.43	3.07	3.33	3.20	3.20	3.37	3.64	3.01	3.11	3,40	3.08	3.33	3.34	3,37	3.61	3.12	3.19	3.04	66.						
TIR LI CORR		128.75	-	123.93	124.29	130.35	128.48	125.43	127.71	135.09	136.37	127.02	128.07	128.39	127.47	124.12	118.17	118.00	123,53	119.39	140.41						
P.I.	,		5,32	6.51	3.66	5.66		5.98	7.89	7.48	1.12	7.15	6.79	7.27	7.42	96.9	7.39	6.47	98.9	6.56	4.56						
THC P.I. CORR	•	,	,	229.01		194.00		194.39	264.14	346.82	348.90	266.17	276.96	281.75	273.35	265.79	261,81	261.82	285.99	276.53	330.04						
F/A CARBON BALARCE	.007276	.006835	,006194	271700.	218900.	.006261	.006928	,006714	.007139	.008185	.007782	819700.	.007593	.007755	.007820	.007883	.007788	.007734	670800.	176700.	.008499						
ă. E	,	-	4.37	** B4	2.39	3.98		4.45	6.34	9.00	6.22	90.9	5.35	5.63	6.22	6.33	6.36	5.51	6.10	6.01	5.32						
ĔI		-	-	256.16		225.47		217.44	267.56	319.47	322.66	258.44	270.04	266.91	267.64	250.77	230.22	232.87	255.35	248.81	290.22						
3.5		,	127.88	146.96		117.52		120.65	167.52	202.80	208.66	165.80	169.35	171.06	168.62	166.95	182,23	182.85	178.11	177.94	183.32						
N. L.I.x		'	3.07	2.62	2.69	2.68	2.91	2.87	3.06	2.34	2.43	2.89	2.47	2.57	2.83	2.96	2.87	2.48	2.64	2.59	2.26						
CDK E.3	175.83	152.23	,	138.62	148.79	151.50	136.17	140,30	129.36	124.44	126.11	123.33	124.87	121.63	121.87	117.11	103.91	104.95	110.29	107.42	123.47				-		
3 I	82.04	77.40	89.80	79.53	78.93	78.97	80.80	77.85	81.00	78.99	81.55	79.12	78.31	77.96	76.78	77.96	82.25	82.41	76.93	76.82	77.99						
COTIF PRESS RATIC	,	1	2.11	2.12	2.15	2.15	2.11	2.19	2.06	1.95	1.98	2.01	2.01	1.98	1.99	1.98	1.97	1.96	1.97	1.97	1.92						
ئ" و".	200	200	-	200	190	180	220	210	220	235	235	220	220	225	220	225	250	242	240	242	245						
THRUST	ì	1	811	625	ı	788	1	741	528	415	418	519	667	493	495	502	475	473	458	456	448						
FUL! FLOW LBS/HK	1125	1196	1154	1155	1173	1173	1149	1149	1091	1067	1070	1087	1079	1083	1088	1074	1053	1050	1060	1057	1052						
AIR FLOW L3S/SEC	47.6	45.3	69.0	48.7	0.67	0.65	48.5	49.7	6.87	47.4	47.5	-		,		,	48.0	47.7	48.0	47.8	47.8						
£ F	1,065	1,076	1.067	1.067	1.073	1.070	1.066	1,066	1.064	1.057	1.054	1.057	1.057	1.058	1.057	1.056	1.053	1.056	1.057	1.057	1.054						
F. IN HE A	30.09	00.00	29.87	30.02	30.05	29.96	30.14	30.22	29.86	29.94	29.76	29.81	29.78	29.51	29.99	30,21	30.00	30.15	29.81	16.62	29.84						
H, GRAINS H2O V LB DRY AIR	10.723	10.723	14.893	17.943	13.560	10,233	14.211	17.943	59.672	123.652	119.573	71.446	91.178	115.622	68.950	68.950	132.212	127.863	111.795	97.629	151,088			-			
2'5"	22	22.5	43	7,	20	26	97	3,5	28	2	78	99	6.5	72	3	73	16	88	87	85	91		_				
KUN No.	-	2	7	21	32	£3	25	3	22	98	16	107	118	129	140	121	175	183	192	203	214						
1		1		1			1		1	1	1		A-		1					1		لبستا	<u> </u>	Щ.			لــا

1ABLE A-10. J57-43 ENCINE PERFORMANCE WITH OBSERVED AND CORRECTED EMISSION INDEXES AT IDLE PUMER (Continued)

	e i g			'	4.36	7.42	7.83	97.9	6.44	7.60	7.43	6.56	5.97	6.05	7.39	7.60	6.42	6.63	6.15	5.63	6.60	/E-=	96.0	6.55			
	THC P.I CORR	1	١	357.36	145.32	290.73	331.34	183.03	254.61	332.55	146.41	263.72	259.19	289.67	279.29	261.76	241. 'n	374.19	268.27	294.03	306.56		57.94	272.77	2.00		
	رة. 11 م		-	3.54	3,27	3.13	3.16	3.85	3.20	3.12	2.98	3.25	3 07	2.85	3.46	2.78	3.14	3.08	2.98	2.55	3.01		0.25	3.20			
•	THC F1	١	ı	135.09	129.06	143.22	134,61	121,33	131.85	132.97	132.78	126.94	131.15	133.20	129.91	125.31	122.45	161.55	121.41	124.15	130.62		8.74	128.72			
١	NOX P.1	•	ı	1	3.05	5.44	6.30	5.04	5.26	6.01	61.9	2.97	5.00	5.04	6.37	4.11	5.15	5.58	5.31	5.01	6.00		١	-			
	F/A CARBON BALARCE	.006637	.005511	.006977	.006795	.006787	.006295	.006532	.007159	676200.	.008025	.007710	.007461	.007373	.007504	.007649	.007666	.007763	.007835	.008195	.007927		0.95	5.38	-		
	THC PI	•	ı	379.98	167.27	331.44	326.29	199.10	256.80	306.32	115.35	249.83	245.54	271.11	26.892	245.98	218.05	330.29	238.61	262.53	276.90		48.23 (263.19			
		-	197.49	214.03	87.69	151.08	172.31	117.76	153.65	203.02	187.46	163.44	151.09	179.30	167.82	165.22	179.89	201.46	183,34	193.12	173.18		١	1			
	3 [*] =		-	3.17	2.71	2.68	2.81	3.34	2.72	2.40	2.37	2.87	2,53	2.32	2.96	1.97	2.40	2,41	2.40	2.11	2.56		0.30	2,65			
	IIK.	ı	-	143.64	146.55	163.27	145.76	131.98	132.98	122.45	120.87	120.25	124.24	124.67	125.10	117.75	101.57	142,60	107.99	110.85	117.98		15.14	127.27			
	8.8	68.64	95.66	80.91	77.87	74.42	76.97	78.06	79.57	81.18	71.85	78.66	76.45	82.45	78.00	79.09	83.80	86.98	82.97	81,54	73.79		•				
	CORP PKESS RATIC	_	2,14	2.10	2.13	2.19	2.16	2.16	2.04	1.95	1.96	2.01	2.04	1.98	2.02	1.99	2.12	2,10	1.93	1.94	1.95		1	-			
	ت د	200		220	200	200	200	210	220	235	240	230	235	232	230	240	240	250	242	292	242		ı	Ī			
	THRUST	•	246	434	1	376	502	742	527	÷26	907	518	540	493	505	512	495	456	473	438	977		٢	1			
	TUE: FLOW LES/HK	1163	1128	1147	6911	1169	1124	6111	1018	1066	106:	1077	1067	1073	1086	1069	1063	1056	1046	1037	1047		•	1			
	alk FLOW LBS/SEC	6.65	49.7	48.2	50.2	49.7	49.7	49.5	48.5	48.0	1	1	•	,	Ī	_	-	47.3	47.3	47.5	47.4		-	1			
	il	1.080	1.070	1.063	1.073	1.075	1.070	1.063	1.060	1.057	1.054	1.057	1.061	1.058	1.057	1.056	1.057	1,053	1.053	1.054	1.055		ı	•			
	F Bai IN Hg A	30.12	29.92	30.02	30.04	29.96	30.13	30.19	29.87	29.90	29.76	29.81	29.76	29.51	30.01	30.20	30.02	29,96	30.12	29.80	29.90		_	1			
	H, GRAINS H2O V LB DRY AIR	12.344	15.607	17.943	17.943	9.765	14.893	21.545	57.518	127.863	119,573	65.341	91.178	101.007	71.446	76.667	136.703	136,703	123,652	111.795	97.629		'	,			
	2' 2"	29	97	4.5	28	30	41	70	57	79	82	72	72	75	89	7/	35	06	88	87	ž		1	1			
	KUN NO.	20	20	31	42	53	63	74	85	96	106	117	128	139	150	191	174	181	191	202	213		S	×			

TABLE A-11. J57-43 ENGINE PERFORMANCE WITH OBSERVED AND CORRECTED EMISSION INDEXES AT APPROACH POWER

					r 1			·- · ,	1	,	1									 		,				_
NO. P.T. CORR		,	7.34	7.50	6.58	1	ı	1	7.31	•	6.70	6.82	7.42	6.92	7.18	1	i	1	7.04							
TEC PI CORR	•	•	2.50	2.82	3.53	3.13	2.64	2.81	2.73	2.87	2.89	3.05	2.81	2.91	2.11	3.07	5,13	2.76	2.85							
21 S		18.09	16.67	15.78	17.92	17.47	15.66	18.12	15.66	16.27	15.33	15,34	16.10	14.47	14.72	15.25	16,65	15.12	15.09							
N X X X X X X X X X X X X X X X X X X X	-	-	7.05	7.31	7.05	-	1	1	6.86	•	6.74	69.9	7.19	6.85	7.16	-	1	-	19.9							
THC EX CORR	-	_	2,47	2.92	3.91	3.14	2.78	2.79	2.65	2.79	2.94	3.09	2. 32	2.95	2.13	3.06	-	2.54	2.71							
CO EI CORIR	16.40	18.02	21.71	15.77	19.57	17.29	16.13	17.96	15.53	16.15	15.83	15.71	16.37	14.80	15.08	15.52	16,08	14,33	16.26							
F/A CARBON BALANCE	.006935	.006555	.007059	.006879	.005923	.006475	.006858	.007189	-107845	.007263	.007561	.007714	.007390	.007450	95/200	.008432	.007850	.008160	.007605		-					
NOX P1		6.70	6.27	5.71	5.28	,	-		5.46		5.82	5,35	5.77	5.81	6.33	-		1	6.05			-		-		-
Th C PI	-	-	2.85	3.86	09.4	3.68	3,16	2.86	2,31	2.39	2.61	2.80	2,46	2.70	1.85	2.49	4.02	2.21	2.30							-
CO P1		20.25	19.82	21.00	22.81	20.32	18.44	18.41	13,46	13.78	13.98	14,20	14.25	13,50	13.03	12.60	13.32	12,36	13.74			<u> </u>	 		 	
NO EI *	•	-	6.04	5.52	2.60	-	-	•	5.51	•	6.3R	5.53	5.95	5.99	6.58	-	-	1	6.03	-		-				
THC	1	•	2.74	3.73	4.88	3,56	3.20	2.83	2.33	2,42	2.72	2.89	2.54	2.78	1.92	2.60	_	2.14	2.29	-						
CO E1	20.76	19.61	19.08	20.29	24.20	19.61	18.63	18.21	13.59	13.96	14.50	14.68	14.70	13.92	13.54	13.12	13.81	12.00	13.70							
COMP PRESS RATIC	1	4.71	4.83	09.4	4.89	4.82	4.89	4.77	4,85	4.83	4.85	4.80	7.90	4.85	4.81	4.92	4.87	4.83	4.71							
, ,	400	,	410	007	400	420	420	450	480	087	465	465	470	760	470	495	200	-	780							
THRUST	t	2389	2349	2378	2535	2381	2506	2434	2496	2426	2521	2527	2558	2515	2529	2608	2529	2464	2343							
FUEL FLOW LBS/HR	2427	2430	2439	2462	2390	2460	2481	2460	2471	2394	2413	2444	2480	2441	2434	2505	2440	2538	2350							
AIR FLOW LBS/SEC	95.5	0.96	97.5	97.5	0.76	97.8	98.8	97.3	97.5	96.8	98.0	98.0	98.1	98.1	98.2	1	98.0	97.0	95.8							
EPR	1,312	1.301	1,310	1.316	1.310	1.309	1.315	1,305	1.311	1,306	1.312	1.309	1.312	1.310	1,308	1.317	1.312	_	1,294							
P Bar IN Hg A	30.11	29.91	30.03	30.04	29.97	30.13	30.20	29.87	29.91	29.76	29.81	29.77	29.52	30.00	30.20	30.03	30.13	29.80	29.90							
H, GRAINS H, O V LB	11.778	17.131	19.672	15.607	10,233	14.893	21.545	59,672	127.863	119.973	66.526	94.354	108,086	71.446	68.950	136.703	132,212	115,622	94.354			-	-			
2°2	27	45	3	22	30	41	39	57	62	18	11	69	75	89	7.5	3	8	98	85							
RUN NO.		18	29	07	51	61	72	2	76	104	115	126	137	148	159	172	189	200	211							,

TABLE A-11. J57-43 ENGINE PERFORMANCE WITH OBSERVID AND CORRECTED EMISSION INDEXES AT APPROACH POWER (Continued)

8 1 00 8 1 00		6.73	7.31	7.23	7.14	7.43		,	7.78	7.26	6 32	7.55		,	1	1	7.43	7.12		,	,	.35	7.15		
THC PT CORR			3.32	7.7	4.73	4.88	4.50	65.5	78	1	5.28	3.93	199-1	8.24	3.40	4,23	ı	,	99.7	3.08	4.47	1.15	4.58		
8 1 8	-	16.31	15.94	15.39	15.75	16,36	14.38	17.22	16.61	16.47	14.80	15.75	15.39	1	14.49	13.83	17.66	17.58	19.90	15,74	17.09	1.25	16.15		
N N N N N N N N N N N N N N N N N N N	1	6.77	7.22	7.12	7.14	7.42	,	•	7.12	6.71	7.30	7.31	1	1	1	1	6.83	09.9	١	ı	١	٥,26	6,98		
TH COST	١		3.43	7.80	4.97	5.02	4.87	7.66	4.5-	-	5.2€	3.95	4.72	١	3.48	4.29	1	1	4,39	2.89	4,25	.67	4.37		
S # S	15.19	16.67	16.10	15.61	16.07	16.61	15.19	17.44	le.Cj	15.99	14.85	16.05	15.64	,	14.92	14.21	17.15	17.21	19.24	14.76	16.60	1.18	16.22		
F/L. CARBON BALANCE	.007213	.006947	.306867	.006999	.006903	.007083	.006875	.007005	.007856	.007901	.007664	.007596	.007532	897600.	.007855	.007848	£6400°	717700.	.006032	,008114	•008049	.326	5,79		
×	٠	5.74	5.91	5.32	5.66	07.9	•	•	5.81	2 60	6.32	5.74	•	1	_	_	5.73	5.54	-		-	.33	5.79		
THC P1	·	•	4.08	6.53	6.28	5.62	5.59	79.4	دَن	1	4.65	3.55	4.45	99.9	3.18	3.73	-	-	3.71	2.47	3.67	1.25	4.57	2500	
00 I	•	.8.72	19.26	21.43	20.41	18.65	17,53	17.49	14.28	14.05	13.70	14,36	14.69		13.62	12.33	14.03	14.07	16.15	12,62	14.27	3.07	15.92	-2-1.11-1	
NC EI *	1	5.77	5.83	5.18	5.60	6.39	-	-	5.72	5.55	6.42	5,96			-	•	5.72	5.57	1	-	-	.303	5.87		
THC EI	1	1	4.03	6.37	6.21	5.61	5.77	4.72	2,99	-	4.92	3,65	4.54	1	3,30	3.89		١	3,67	2.43	3,64	1.14	4:45		
CO E1	19.85	18,82	19.02	20.90	20.19	18.62	16.08	17.68	14.05	13.91	13,90	14.78	15,01		14,13	12.85	14.01	14.14.	16.01	12.42	14,16	3.04	16.23		
.O:1P PRESS RATIC	i	4.72	4.76	4.81	4.86	4.83	4.89	4.75	4.80	75	4.79	4.92	4.90	5	4.85	4.88	4.84	4.85	4.83	4.83	4.82	S	X		
. °.	700		430	410	700	420	420	077	470	787	797	472	760	067	097	470	200	495	392		485	1	١		
THRUST	t	2411	2370	2378	2485	2469	2554	2435	2382	2406	2471	2549	2525	2557	2567	2559	2470	2528	2454	2463	2449		ı		
FUEL FLOW LBS/HR	2441	2398	2400	2439	2513	2473	2477	2409	2421	2431	2435	2476	2471	2488	2475	2455	2474	2514	2475	2502	2467	•	_		
AIR FLOW :BS/SEC		0.96	96.3	97.5	98.0	0.66	98.0	ı	97.3	9.96	97.1	0.36	5.36	0.96	98.1	96.0	98.5	98.2	98.0	97.0	97.0	1	1		
EPR	1.311	1,301	1.308	1,313	1.314	1.313	1,308	1.302	1.307	1.306	1.309	1,312	1.312	1.310	1.310	1,315	1.309	1,312	1,309	1,308	1,308	,			
F. Bar IN Hg A	30.10	29.89	30.03	30.04	29.96	30.14	30.22	29.85	76.67	29.76	29.81	29.51	29.78	30.04	29.99	30,20	29,99	30.13	29.81	29.91	29.87	'	,		
H, CRAINS H, O V LB DRY AIR	10.723	16,352	20.590	14.893	9.765	14.893	19.672	57.518	127.863	119,573	71.44	108,086	91.178	141.343	71.446	74.018	136.703	132,212	115.622	88.097	132,212	•	•		
1 2 L	23	42	36	20	28	3	35	57	79	8	69	11 1	65	85 1	67	77	8	89	87	88	83	·	•		
RUN No.	4	2	23	75	45	26	99	77	88	66	109	131	021	166	142	153	177	186	194	205	216	<u>s</u>	UK.	52	

TABLE A-12. J57-43 ENGINE PERFORMANCE WITH OBSERVED AND CORRECTED FMISSION INDEXES AT CRUISE POWER.

02 N		8.30	8.79	9.24	8.87	9.3:	10.16	9.75	8.9°	9.12	78.6	10.56	10.15	8.91	9.12	,			,						
THC CORR	,	-	.35	1.02	11.98	1.10	1	-		200	1.24	76.	-	· 6.	76.	2.65	3.63	.63	,	,			-		
CORR		5,55	5.19	6.63	4.87	6.35	5.05	5.13	5 10	5.47	5.10	5.55	5.09	5.87	4.51	5.52	5.54	3.62	.26	3.08	1				
M 1100		9.64	9.97	10.10	10.14	10.63	11.75	11.47	10.51	10.35	10.89	11.77	11.37	10.23	10.89	1	1	ı	3.94	19.4					
THC	•		07.	1.13	1	1.34	1.24	1.19	1.69	1.20	1,42	1.09	.77	1.07	1.17	3.35	4.58	.74	.30	3,72					
CO E1 COM	5,70	6,54	6.03	5.24	5.70	7.38	6.02	6.23	6.31	67.9	5.81	6.45	5.9€	6.93	5.54	6.87	6.87	4.21	4.62	5.49					
F/A CARBON BALANCE	.008660	.008835	.009040	.008861	977800.	990600	.008837	121600.	098600	861010.	.010313	.009945	.010330	.009668	.009761	.009736	.009901	.010528	.010797	.010946			-		
X I d	-	76*9	7.0	6.33	6.70	7.84	7.98	8.02	6.86	7.24	8.46	8.25	7.96	7.55	8.03	1	1	-	1	1					
E F		-	.39	1.36	14.01	1.26	1.18	66*	1.23	.91	1.18	.91	÷9.	-87	.88	2.36	3.16	.55	.23	2.69					
00 I	·	78.9	6.78	8.21	7.44	7.56	6.81	5.23	3.98	4.20	4.47	2.14	4.27	5.27	3.74	4.01	3.80	2.54	2.83	1.20					
9. I	٠	8.34	8.33	7.47	8.10	9.25	6.67	9.73	8.35	8.45	9.55	3.53	9.21	8.84	9.73	1	1	1	1	1					
THC E1	١		97.	1.49	1	1.49	1,43	1.20	1.50	1.06	1,33	1.05	, ·	1.02	1.07	2.88	3.82	.62	.26	3.12					
CO E1	9.57	8.22	8.03	69.6	8.99	9.27	8.27	6.35	., .,	4.91	5.04	5.94	76.7	6.17	4.53	4.88	4.59	2.88	3.24	3.71					
COMP PRESS RATIC	•	7.73	7.87	7.86	7.81	7.86	7.92	7.90	7.85	7.79	5.25	7.72	7.85	7.84	7.82	7.77	7.77	7.75	7.86	7.84					
, o r	520	100	260	520	520	260	999	965	929	079	615	600	622	900	610	630	637		'	650			_		-
THRUST LBS	•	5590	5617	5604	5617	5645	5800	5815	5636	5872	5675	5663	5715	5519	5711	5683	2690	5569	5648	5763					
FUEL FLOW LBS/HR	4656	4651	4743	4750	4647	4788	4782	4789	4632	5029	5027	4903	6943	4715	4715	4666	1117	4923	4922	7267					
AIR FLOW LBS/SEC	133	132.2	134.0	133.5	133.2	133.8	134.5	134.5	134.5	136.7	140.C	139.€	139.2	133.2	133.6	133.6	133.0	139.2	139.2	143.2					
EPR	1.771	1.753	1.773	1.773	1,761	1.767	1.778	1.777	i.759	1.770	1.772	1.749	1.759	1.761	1.762	1.760	1.761	1.755	1.760	1.764					
P Bar IN Hg A	30.11	29.90	30.02	30.03	29.96	30.13	30.22	29.85	29.94	29.76	29.81	29.77	29,52	29.99	30.20	30,03	29.98	29.80	29.91	30.13					
H, GRAINS H ₂ O V LB DRY AIR	11.238	17.131	20,590	13.560	10,233	14,893	21,545	57.518	127.863	119.573	71.446	91.178	108,086	71.446	74.018	141.343	:36.703	111,795	91.178	132,212					
C P H	24	3	39	118	28	6.4	37	57.5	7.9	98	69.5	65	73	67.5	7,4	85	8	88	98	68					
RUN NO.	2	17	24	35	97	27	67	78	8	100	110	121	132	143	15.	167	178	195	206	187					

TABLE A-12. J57-43 ENGINE PERPORMANCE WITH OBSERVED AND CORRECTED EMISSION INDEXES AI CRUISE POWER (Continued)

S I N	8.80	8.89	5.15	10.16	9.59	9.20		11.8	9,68	9.09	6.73		,	,		.80	9.36								
THC PPI CORR	.25	69*	.53	67.	.50	67.	7.	99.	. 73	ż	ξ.	1.00	5.	۶.		ı	ı								
در 17 و ا	5.15	5.24	16.7	19.4	5.13	5.04	5.04	-6.7	5.26	5.50	4.5-	5.58	3.51	4.25		09.0	5.01								
ra ra cons	10.08	9.88	10.39	11.87	11.25	10.27	9.38	11.41	10.65	5.55	וריים	1		,	-	6.72	10.60		-						
THC	.29	.77	.62	.58	19.	. 65	.87	5.	.86	.77.	.43	1.27	.63	99.		1	-	-							
CO E1	6.02	ć.0c	5.73	5.51	6.62	5.94	90.9	5.82	5.07	69*9	5.59	7.01	3.95	4.95		6.76	5.95								
F/A CARBIN BALASCT	986800.	- 008647	.008755	.008723	.009157	717010.	-010546	.010255	668600.	787 600.	.009772	.009626	.010517	.0 .573		ı	•				-	-			
X I I	7.26	6.45	6.91	8.11	7.81	7.06	7.11	7.93	7.70	7.04	7.90	-	ı	ı		-59	7.46		 		-			İ	_
¥ï	72.	-82	.63	.54	.50	-45	99.	79.	39.	.61	.32	-89	34.	.5.		1	1		 		-				
CC P.I	97.9	8.37	7.51	6.03	5.20	3.93	4.33	01.	4.32	16.7	3.74	90.2	2.49	3.09		1.68	5.02				_				
o. X	8.63	7.64	8.30	9.89	67.5	8.16	8.46	9.27	8.73	8.49	65.6		,	,		0.70	8.85	-							
7H.	.32	.97	.76	99.	.61	:55	.81	.75	.76	5.	.30	P1. * E	ŝŝ.	.5.		-	ı								
C0 E:	7.67	16.6	9.02	7.3~	6.31	4.55	5.15	5.27	06.4	5.65	4.54	56.5	2.74	3.54		2.13	6.05								
COMF PRESS RATIC		7.88	7.79	7.92	7.82	7.75	8.22	7 e.	7.92	1.2.	7.87	7.77	7.7	7.83		S	ı×						_		
0	575	520	530	260	296	630	620	1	42.5	5112	616	956		638		•	1								
THRUST	5627	5613	5585	5864	5730	5681	5775	5830	5601	5686	5696	5712	5560	5669		,	1								
FUEL FLOG LBS/HR	4739	740	0597	4813	6172	9167	782	9867	4935	4715	9697	4652	5053	9565		1	1								
AIR FLOW LBS/SEC	2,61	133.3	132.9	136.5	133. 5	139.3	139.C	141.0	139.8	133.3	133.4	133.3	134.3	139.3		•	'								
EPK	1.776	1.779 133.3	1.761 132.9	1.782	1.770	1.749	1.772	1, 773	1.773	1.767	i.759	1.757	1.759	1.753		,	·								
P. Bar IN Ag A	30.03	30.04	29.97	30.20	29.87	26.92	29.81	29.76	29.52	30.00	30.20	30.03	29.80	29.90		-									
H, CRAINS H2O V LB DRT AIR	18.790	14.893	10,233	21.545	61.889	127.863	6174	94.354	108.086	64.174	66.526	125,703	11' .622	94.354		'	'								
24 5h	77	25	28	39	58	26	=	67	7.5	89	25	28	87	85		<u>.</u>	•								
RUN NO.	28	39	8	11	82	93	114	125	136	147	153	171	199	210		S	×								

TABLE A-13. 357-43 ENGINE PERRORMANCE WITH OBSERVED AND CORRECTED EMISSION INDEXES AT MAXIMUM CONTINUOUS POWER.

× ~	Π	_	_	<u> </u>				.,	_	2		6	4	=	7						27	9.68	9.91	9.77	28		
2 1 8		9.17	9.21		9 83	0 %	10.29	8.35		7.35		7.59	7.54	7.87	7.42			'	_	1	8.95	6	6	6	10.28		
THC P1 CORR		,	91.	.52	62.	7.8	×	ĩ e.	1.25	.76	08.	.53	.73	79.	.53	1.45	2,25	.53	.21	٠	91.	54.	.45	.53	.36		\$
CORR		3,80	3,48	3.19	3.61	4.26	3.23	3.77	4,50	4.31	3.78	3.44	10.4	-	2.88	4.31	3,58	2.64	3.85	4.04	3.76	3.46	3.21	3,61	3,27		4.11
NO _X L1 CORR		11.35	11.24	11.16	11.58	11.78	12.77	11.80	11.54	11,59	1	11,43	11.46	11.89	11.09	1	1	1	1	1	11.01	11.30	11.68	11,82	12.71	12.29	11.37
CO F.1 CORR	4.41	4.70	4.23	4.00	4.48	5.19	4.00	4.57	5.34	4.68	4.33	3.96	4.39	1	3.44	5.15	4.03	2.28	4.29	4.97	4.46	4.29	3.99	4.36	4.05	69.7	4.67
1/A CALBON BALATO	.009250	.009461	079600.	187600.	.009383	069600	.009560	.01012;	.010393	.01084~	.011434	192110.	.01098÷	417010.	.010630	065010.	867110.	.011753	.012036	.009249	029600.	.009267	.009483	089600.	.009453	000010	.010934
× - × -	,	7.94	7.76	6.58	7.39	8.40	8.46	b.28	-	8.77	ı	7.99	8.56	8.50	8.43	1	,	1	7.09	6.62	7.75	6.87	7.43	8.46	8.57	•	8.02
ŧΞ		,	.17	65.	.87	.82	. 58	.62	1.18	.72	.78	٥٠.	.70	.62	.51	1.35	2.07	64.	.20		71.	95.	05.	.56	.38	-	.62
3 =		5.03	4.86	6.52	6.32	5.66	4.73	3.83	3.25	3.00	3.15	3.11	3.13	1	2.25	2.83	2.18	1.28	2.57	5.15	4.85	6.74	5.62	4.78	4.65	ı	2.97
ž		9.66	9.29	7.97	16.8	10.01	10.28	10.03	9.36	9.68	-	9.32	67.6	10.29	10.20	١	-	-	1	1	9.31	8.24	00.6	10.08	10.43	10.40	9.22
= :	10.79		.21	.72	1.06	86.	п.	.75	1.42	.80	06.	\$4.	.78	.75	.62	1.65	2.39	35.	.23	٠	.21	9.	19:	99.	97.	.45	.71
83	7.80	6.13	5.81	7.90	7.63	6.78	5.75	79.7	3.91	3.38	3.64	3.62	3.47	1	27.2	3.45	2.51	1.46	2.92	6.27	5.82	8.09	6.80	5.69	5.67	69.5	3.42
CORP FRESS RATIC		8.60	8.61	8.58	8.49	8.54	8.58	8.55	3.44	8.46	8.60	8.56	8.47	8.57	8.54	8.53	8.58	8.59	8.60	8.53	-	65.8	8.51	8.52	8.58	8.55	8.37
ຼິ່ວ	260		590	540	550	580	580	610	645	000	640	635	650	625	079	659	6.40	-	675		290	550	560	580	580	620	650
THKUS1 LBS	1	1799	6524	7/ 79	96434	0559	0099	6595	9079	638!	6631	4079	6504	1099	6603	6653	6592	6638	6521	6559	94.84	6079	71.79	6440	9199	1	6390
FUET FLOW LBS/IIR	5384	5455	5454	5345	5333	5381	5430	544	5322	5779	5747	5747	5867	5457	5460	5448	5723	5817	5741	5385	5399	5341	5345	5404	5435	5420	5559
ATR FLOW LBS/SEA	142.7	143.5	143.3	142.3	141.0	142.4	143.2	142.7	140.9	150.8	148.5	150.8	149.8	142.4	142.4	142.5	148.3	148.5	148.6	142.3	142.3	142.5	142.2	142.3	143.2	142.6	149.2
r.	1.907	1.913	1.913	1.913	1.895	1.896	1.907	1.905	1.883	1.904	1.913	1.914	1.895	1.901	1.901	1.910	1.905	1.907	1.910	1,903	1.910	1.913	1.901	1.900	1.904	1.905	1.880
t bat IN IIS A	30.11	29.91	30.02	30.04	29.97	30.13	30.22	29.80	29.93	29.76	29.81	29.76	25.67	29.99	30.20	30.03	29.98	29.80	29.91	16.62	30.03	30.04	29.97	30,13	30,20	29.86	29.92
H, CRAINS H ₂ O V LB DRY AIR	11.238	16.352	18.790	14.211	10.723	14.893	21.545	57.518	127.863	119.573	65.341	91.178	108.086	76.667	68.950	136.703	136.703	111.795	94.354	16.352	18.790	14.211	10.233	15,607	20,590	61.889	127.863
313	92	43	07	92	28	43	37.5	Sb	75	98	70	\$	7,	3	7,4	65	26	20 20	78	4.5	43	22.5	28	5	6	69	62
KUN NO.	9	15	25	36	47	28	68	79	90	101	Ξ	122	133	144	55	891	179	196	207	=	27	38	67	3	2	18	92

TABLE A-13. 557-43 ENGINE PERFORMANCE WITH OBSERVED AND CORRECTED EMISSION INDERES AT MAKINUM CONTINUOUS POWER (Continued)

ſ	~						Ĭ.				1	1	1	1	1	Τ	Γ	1	1	T	T-	Г	T	Ι -	T -	Ī	
	THC EI CORR															_			L.		_		L				
	P.I. K	7.49	7.75	8.25	7.34	•	7.55	١		7.57												1.08	8.62				
	THC P.I CORR	3.	.54	3.	.61	.41	.23	1.02	2	.17												-	-				
	CO PI CONUR	4.15	3.46	3.34	3,99	4.18	2.88	4.29	2.26	3.00												0.61	3,55				
	NO _X EI CORR	11.85	19.0.	12.55	11.65	1	11.25	-	-	11.90												0.50	11.47				
	CORR	4.52	3,95	3.87	4.56	5.07	3.45	5.15	2.49	3.37												99.0	4.27				
	F/A CARBON BALATCE	.010953	.011546	.011243	.016741	.010429	.010633	.010586	915110.	.011439		-										1	1		1		
	N I d	8.93	8.59	8.76	8.40	ı	8.58	1	-	07.6												.726	8.10				
ľ	INC P1	09.	.52	.63	.58	640	.22	.95	. 59	.16												-	,		-		
ľ	CO P.I	2.95	2.84	2.97	3.07	3.54	2.25	2.82	1.44	1.97								il ili				2.28	3.59				
-	No.	9.89	9.87	10.21	9.71	,	10.42	8.69	9.45	10.79						<u> </u>		1				0.68	9.70				
	THC E.:	99.	.59	.74	.67	67.	.26	1.16	99.	.18												i	-				
	CO E.1	3.26	3.27	3.46	3.55	4.33	2.73	3.45	1.62	2.26												1.85	4.41				
	COMP PRESS RATIC	8.50	8.59	8.53	8.56	8.54	8.59	8.53	67.9	6.53												y,	×				
r	r o r	670	650	650	650	625	079	655	1	675					-							_					
	THRUST LBS	6382	0999	6647	9659	6647	6642	6622	6476	6563																	
	FUEL FLOW LBS/HR	5763	5797	5700	5709	5437	2467	5414	5734	5715																	
-	AIR FLOW LBS/SEC	149.3	148.5	149.2	149.6	142.4	142.7	142.7	148.0	148.0																	
r	EPR	1.901	1.906	1.898	1.895	1.904	1.904	1.907	1.910	1.903																	
	Bar IN Hg A	23.76	29.81	29.75	29.52	30.00	30.20	30.03	29.80	29.90																	
1	H20 V LB	119.573	64.174	94.354	108.086	64.174	66.526	136.703	115.622	101.007				L													
	J 9"	8	11	99	75	69	7,7	85	87	85																	
	RUN No.	103	113	124	135	146	157	170	198	509																	

TABLE A-14. 157-43 ENGINE PERFORMANCE WITH OBSERVED AND CORRECTED EMISSION INDEXES AT TAKEOFF POWER

NO R P I		11.82	11.62	11.73	12.23	12.42	ı	11.22	9.18	8.96	-	9.79	8.98	9.51	10.08	-	•	1	ı	8.97	1,46	10.43			
0 1 N		2.19	2.02	1.92	•	1,84	1.65	2.06	2.35	2.17	2.03	1.93	1.93	1.77	1.04	2.03	2,15	1.14	2.04	1.47	0,35	1.87			
NO X X CORR		14.53	14.23	13.84	14.47	15,00	TURNES.	15.53	15.67	•	14.90	15.10	14.54	14.07	14.64	13,93	1	-	-	13.96	.58	14.6			
CO FII CONR	2.22	2.61	2.39	2,27	-	2,16	1.98	2.43	2.78	2.56	2.40	2.30	2.31	7.11	1.24	2.41	2.55	1.34	2.43	1.73	0,40	2.22			
F/A CARBON RALANCE	.011365	.011437	,011544	.011564	927110.	706110.	.011654	.012367	.012649	.012436	. 012951	. 012634	. 012348	012912	012688	.012974	012675	.013304	.013309	.012951	1	•			
N. N. X. Y.		10.57	10,23	8.64	9.63	10,93	r) R	11.14	10.56	10.37	-	10.26	9.98	10.18	10.21	-	-	1	1	10.66	.68	10,33			
I#C	·	•		.20	30	.33	.33	.25	. 56	:63	.57	97.	97:	.27	.23	60.		69.	ı	.15	S	l×			
00 I		2.61	2.46	3.09		2.24	2.12	2.08	1.89	1.73	1,79	1.79		1.59	88.	1.53	1.54	78.	1.49	1.12		0.59	1,80		Hai
No No LI		12,62	12.11	10.22	11.43	12.88	-	13.14	12.52	12.25	•	12,29	11.90	12.13	13.32	11.25	,	-	-	12.57		18.	12,19		
THC E1	2.94	51	•	.24	98.	•38	66.	.30	99*	74.	79.	,55	.55	.32	.28	11.	•	.82	11.9	81*		ı			
8 i3	3.27	3.11	2.91	3.66	•	2.64	2,53	2,46	2.24	2.04	2.11	2,14	1.96	1.90	1.05	1.82	1.83	66.	1.76	1.32		0.72	2,20		
COMP PRESS RATIC		10.42	10.36	10.44	10.41	10,38	10.41	10,38	10.38	10.45	10.40	10.42	10.35	10.44	10.33	10,33	10.35	10.39	10,38	10.37		1	1		
1, 3	620	·	640	909	620	640	640	675	710	715	695	690	700	690	700	720	730	292	723	718		-	١		
THRUST	-	9039	8894	8951	8959	8869	9100	9890	8995	9033	9007	9102	9010	9018	8962	9059	9047	9030	9082	9015		١	1		
FUEL FLOW LBS/HR	7402	7573	7512	7565	7543	7532	7617	7622	7587	7652	7649	7599	7558	1571	7543	7597	7624	7636	1022	7642		1	1		
AIR FLOW LBS/SEC	163.5	164.2	163.5	156.2	164.0	163.6	164.4	165.0	163.5	-	163.5	164.3	163.6	163.6	162.5	163.6	163.6	163.5	163.5	163.6		1	1		
EPK	2.299	2.311	2,296	2.314	2,309	2,298	2,308	2.303	2,301	2.143	2,306	2,301	2,298	2,305	2.292	2,300	2.302	2,303	2.311	2,302		-	ı		
P Bar IN Hg A	30.11	29,91	30.03	30,35	29.97	30.13	30.21	29.86	29.93	29.76	29.81	29.76	29.52	29.99	30.20	30.03	29.96	29.80	30.14	29.91		1	1		
H. GRAINS H2O V LB DRY KIR	11.778	16,352	18,790	14.211	10,723	15.607	21.545	59.672	127.863	119,573	65,341	91.178	108.086	76.667	68.950	136.703	136.703	108.086	127.863	94.354		1	١		
J' 5"	27	7.	77	20	28	42	38	58	79	8	70.5	65.5	7,4	68.5	7,4	85	8	87	88.5	35	\prod	•	_		
RUN NO.	7	16	56	37	87	59	69	98	91	102	112	123	134	145	156	169	182	197	185	208		s	×		

APPENDIX B

EMISSION INDEXES AND MATHEMATICAL MODELS TF30-P1 AND J57-43WB ENGINES. NO $_{\mathbf{X}}$ INDEXES ARE CORRECTED FOR HUMIDITY

APPENDIX B

LIST OF ILLUSTRATIONS

		Page
B-1	CO EITF30-P1 EngineIdle Power	B-1
B-2	CO EIJ57-43 EngineIdle Power	B-2
B-3	CO EITF30-P1 EngineApproach Power	B-3
B-4	CO EIJ57-43 EngineApproach Power	B-4
B-5	THC EITF30-P1 EngineIdle Power	B-5
B-6	THC EIJ57-43 EngineIdle Power	B-6
B-7	THC EITF30-P1 EngineApproach Power	B-7
B-8	THC EIJ57-43 EngineApproach Power	B-8
B-9	NO _X EITF30-P1 EngineApproach Power	B-9
B-10	NO _x EIJ57-43 EngineApproach Power	B-10
B-11	NO _x EITF30-P1 EngineCruise Power	B-11
B-12	NO _x EIJ57-43 EngineCruise Power	B-12
B-13	NO _x EITF30-P1 EngineMaximum Continuous Power	B-13
B-14	NO _x EIJ57-43 EngineMaximum Continuous Power	B-14
B-15	NO _x EIJ57-43 Engine Takeoff Power	B-15

FIGURE B-1. CO EI--TF30-PI ENGINE--IDLE POWER

FIGURE B-2. CO EI--J57-43 FTGINE--IDLE POWER

FIGURE B-3. CO EI--TF30-P1 ENGINE--APPROACH POWER

B-4

FIGURE B-5. THC EI--TF30-PI ENGINE--IDLE POWER

THC EI--J57-43 ENGINE--IDLE POWER

FIGURE B-6.

B-6

THC EI--TF30-P1 ENGINE APPROACH POWER FIGURE B-7.

NOX EI--TF30-P1 ENGINE--APPROACH POWER FIGURE B-9.

B-12

FIGURE B-14. NOX EI--J57-43 ENGINE--MAXIMUM CONTINUOUS POWER

FIGURE B-15. NOX EI--J57-43 ENGINE TAKEOFF POWER

APPENDIX C

CORRELATION COEFFICIENTS, ANALYSIS OF VARIANCE VALUES AND COEFFICIENTS FROM REGRESSION ANALYSIS

APPENDIX C

LIST OF TABLES

C-1	CO lbs/1,000 lbs Fuel, Idle Power, EPR 1.08 TF30-Pl Engine	C-2
C-2	CO lbs/1,000 lbs Thrust, Idle Power, EPR 1.08 TF30-Pl Engine	C-2
C -3	CO lbs/1,000 lbs Fuel, Approach Power, EPR 1.31 TF30-Pl Engine	C-3
C-4	CO lbs/l,000 lbs Thrust, Approach Power, EPR 1.31TF30-Pl Engine	C-3
C -5	CO lbs/1,000 lbs Fuel, Cruise Power, EPR 1.76 TF30-Pl Engine	C-4
C -6	CO lbs/1,000 lbs Thrust, Cruise Power, EPR 1.76 TF30-Pl Engine	C-4
C-7	CO lbs/1,000 lbs Fuel, Maximum Continuous Power, EPR 1.905TF30-P1 Engine	C-5
C -8	CO lbs/1,000 lbs Thrust, Maximum Continuous Power, EPR 1.905TF30-P1 Engine	C-5
C-9	CO lbs/1,000 lbs Fuel, Takeoff Power, EPR 2.05 TF30-Pl Engine	C-6
C-10	CO lbs/1,000 lbs Thrust, Takeoff Power, EPR 2.05 TF30-P1 Engine	C -6
C-11	THC lbs/1,000 lbs Fuel, Idle Power, EPR 1.08 TF30-Pl Engine	C-7
C-12	THC lbs/1,000 lbs Thrust, Idle Power, EPR 1.08 TF30-P1 Engine	C-7
C -13	THC 1bs/1,000 1bs Fuel, Approach Power, EPR 1.31TF30-Pl Engine	C-8
C-14	THC lbs/1,000 lbs Thrust, Approach Power, EPR 1.31 TF30-P1 Engine	C-8
C -15	THC lbs/1,000 lbs Fuel, Cruise Power, EPR 1.76	C-9

LIST OF TABLES (Continued)

Table		Page
C-16	THC lbs/1,000 lbs Thrust, Cruise Power EPR 1.76 TF30-Pl Engine	C-9
C-17	THC lbs/1,000 lbs Fuel, Maximum Continuous Power, EPR 1.905TF30-P1 Engine	C-10
C-18	THC lbs/1,000 lbs Thrust, Maximum Continuous Power, EPR 1.905TF30-P1 Engine	C-10
C-19	THC lbs/1,000 lbs Fuel, Takeoff Power, EPR 2.05 TF30-Pl Engine	C-11
C-20	THC lbs/1,000 lbs Thrust, Takeoff Power EPR 2.05 TF30-Pl Engine	C-11
C-21	NO _x lbs/1,000 lbs Fuel, Idle Power EPR 1.08 TF30-Pl Engine	C-12
C-22	NO _x 1bs/1,000 1bs Thrust, Idle Power, EPR 1.08 TF30-P1 Engine	C-12
C-23	NO _x 1bs/1,000 1bs Fuel, Approach Power, EPR 1.31 TF30-Pl Engine	C-13
C-24	$NO_{\rm X}$ lbs/1,000 lbs Thrust, Approach Power, EPR 1.31TF30-Pl Engine	C-13
C-25	NO _x 1bs/1,000 1bs Fuel, Cruise Power, EPR 1.76 TF30-Pl Engine	C-14
C26	NO _x 1bs/1,000 Thrust, Cruise Power, EPR 1.76 TF30-P1 Engine	C-14
C-27	NO _x 1bs/1,000 Fuel, Maximum Continuous Power, EPR 1.905TF30-P1 Engine	C-15
C-28	NO _x 1bs/1,000 Thrust, Maximum Continuous Power, EPR 1.905TF30-P1 Engine	C-15
C-29	NO _x lbs/1,000 Fuel, Takeoff Power, EPR 2.05 TF30-Pl Engine	C-16
C-30	NO _x 1bs/1,000 Thrust, Takeoff Power, EPR 2.05 TF30-P1 Engine	C-16

APPENDIX C

CORRELATION COEFFICIENTS, ANALYSIS OF VARIANCE VALUES AND COEFFICIENTS FROM REGRESSION ANALYSIS

DEFINITION OF TERMS.

The correlation coefficient represents the proportion of the total variation of the emission index explained by the associated variable. The multiple correlation coefficient squared represents the proportion of the total variation accounted for by the fitted equation. The F value is used to test the "significance" of the multiple correlation coefficient squared, where the degrees-of-freedom are 2 for the numerator and N-3 for the denominator and N is sample size. Computed "t" value is the ratio of the regression coefficient and its standard deviation. It used to determine if its regression coefficient is different from zero.

Partial correlation coefficient represent the proportion of the total variation of the emission index explained by the associated variable while the other variables are kept constant. Regression coefficients are the values for multiple regression equation model. The log transformation in these tables are to the base 10.

TABLE C-1, CO LBS/1,000 LBS FUEL, IDLE MOMER, EPR 1,08--IF30-P1 ENGINE

	** 8		1 41	1 41	8 41	1 41	17 41	1 41	10 48
	\$3S		2.71	2.81	2.68	2.71	.02047	.021	.0210
		A-	4.98		3.44		.03680		
	Regression Equation Constants	=	045	062	086	093	00045	0006	-,00060
	~	A T	- 79.46156045	70.70151062	-44.55 220.46	233.9	259.9570	1.306 253.3	1.2787 268.7686
		<		70.70		58.75	.1828	1.306	1.2787
	on nts	۵.	. 309		.219		.302		
	Partial Correlation Coefficients	=	253	425336	.469618	099 987.	.401341	.377415	.386437
	00	-	-3.09 -1.59 1.98453253	425	694.	985	.401	.377	.386
	ed t	d	1.98		1.36		1.93		
	Computed t Value	±	-1.59	-2.90 -2.20	3.23 -4.78	3.43542	2.67 -2.20	2.51 -2.81	2.81 -3.26
		-	-3.09	-2.90	3.23	3.43	2.67	2.51	2.81
Analysis of Variance	Regression Analysis F Value		42.7	57.8	43.82	63.4	47.4	57.3	82.1
	Multiple Cor. Coef.		.881	.868	.883	.877	.880	.867	.886
	icients	a	+.545		.545		.550		
	on Coeff	T H P	835	835	.769835	.769835	.837843	843	.864
	Correlation Coefficients	T	678	849835	691.	.769	.837	.837	.857
	Regression Equation		Linear (5)849835 +.545	Linear (5)	1/T (3)	1/T (3)	Log K (6)	Log K (6)	Log K (6)

TABLE C-2. CO LBS/1,000 LBS THRUST, IDLE FOWER, EFR 1.05--TF30-F1 ENGINE

** S		39	39	39	33	39	39	57
*38		3.05	3.45	3.00	3.29	.02610	.029	920.
	۵	9.53		8.23		.07671		
Regression Equation Constants	æ	030	065	057	075	0,000	001	0007
ž – J	T A	111	58.5095	170.71	9.661	201.928	172.4	1.448 144.12
	<	-228.2111	58.5	-197.95 170.71	49.5 199.6	97661 201.928	1.394 172.4	1.448
on ot s	d	.487		.439		999.		
Partial Correlation Coefficients	H	152	292	.352420	.370500	.257243	364	179414
ŏŏ	-	3.30306152	232292	.352	.370	.257	.198	.179
.	d	3.30		2.89		3.11		
Computed Value	T	-1.9091	-1.44 -1.83	2.22 -2.74	2.39 -3.47	1.57 -1.48	1.213 -2.34	1.183 -2.947
J	-	-1.90	-1.44	2.22	2.39	1.57	1.21	1.18
Analysis of Variance Regression Analysis F Value		23.1	22.9	24.34	26.9	23.87	24.95	36.44
Multiple Cor. Coef.		999.	674.	.822	411.	.820	.762	961.
cients	-	.624		.624		.619		
Correlation Coefficients	Ŧ	Linear (5)720731	Linear (5)720731	.682731	.682731	.719751	.719751	.747789
Regression Equation		Linear (5)	Linear (5)	1/T (3)	1/T (3)	Log K (6)	Log K (6)	Log K (6)

TABLE C-3. CO LBS/1,000 LBS FUEL, APPROACH POWER, EPR 1.31--TF30-P1 ENGINE

**		33	33	33	33	33	33	37
SE*		.732	.720	.839	.841	.02164	.021	.022
	٩	.030		896		00743		
Regression Equation Constants	Ξ	.007	.007	030	029	00002	000	00032
	1	116	116	141.20	13.5 132.79	17193 807.9265	385 802.3	28118 755.566 00032
	V	20.3	21.2	42.46 141.20	13.5	17193	-, 385	28118
e a t s	4	.007		.73551197		.780012062		
Partial Correlation Coefficients	T H	.,,,	.112	551	.724530	012	400	204
ی ق	-	.804	807	.73	.724	. 780	.7800n4	.754204
	٩	70.	•	1.08		337		
Computed t	=	09.	.61	5.80 -3.55	-3.42	6.72067	022	-1.22
°5	-	-7.29	-7.47	5.80	5.74	6.72	6.84	6.70 -1.22
Analysis of Variance Regression Analysis F Value		12.6	112.7	53.13	78.7	61.39	104.11	146.14
Multiple Cor. Coef.		.939	.939	.920	.916	51.6.	\$16.	976.
lcfents	4	177.		177.		.428		
Correlation Coefficients	=	815	815	.882815	.882815	.935823	.935823	.871
Correlat	ı	939	939815	.882	.882	.935	.935	776.
Regression Equation (Linear (5)939815	Linear (5)	1/T (3)	1/T (3)	Log K (6)	Log K (6)	Log K (6)

TABLE C-4. (3) LBS/1,000 THRUST, APPROACH FOWER, EPR 1.31--TF30-P1 ENGINE

Regression Equation	Correlato	1on Coel	Correlation Coefficients	Multiple Cor. Coef.	Analysis of Variance Regression Analysis F Value	5 2	Computed t	ند	Cor	Partial Correlation Coefficients	ر. د		<u>ខ</u> ុំ ដើប័	Regression Equation Constants		*3S	* *S
	L	=	£-			T	=	٩	H	=	-	V	F	Ξ	٩		
Linear (5)	579 411	411	.224	.608	6.85	-3.44	1.23	1.23 -0.330492	765.	.203	.203056	24.1	071	.015	381	1.16	39
Linear (5)	579411	411		.607	10.5	-3.17	1.36	,	067	.222		12.6	0.00-	.016		1.15	39
1/1 (3)	.528	.528411	.234	775.	16.4	2.52	-, 749 -, 746	746	. 392	. 192 126 125	125	36.44	79.20	007	947	1.23	39
1/1 (3)	.528	.528411		.534	7.17	2.47	555		.374092	092		8.05	72.45	9500 -		1.22	39
Log K (6)	.573	.573403	.195	.09	19.9	3.29	1.02603	603	.486	.170	101 071.	.287	.287 865.5	.001	034	.057	39
Log K (6)	.573	.573403		965.	9.90	3.27	1.22		614.	. 199		709 843.1	843.1	.001		950.	39
Log K (6)	.732	.732583		740	21.26	4.02	1967		. 562	.161							

TABLE C-5. (X) LBS/1,000 LBS FUEL, CRUISE FOMER, EPR 1.76--TF30-P1 ENGINE

**		39	39	39	39	39	39	45
SE*		.259	.260	.268	.267	.036	.036	.028
	<u>a</u>	.281		.237		.045		
Regression Equation Constants	Ξ	.002	.00012	005	900* -	0002	+0000 -	0007
	H	-2.97036	5.38034	-4.79 68.87	2.43 65.09	-2.98 1108.6	-1.40 1006.6	-1.204 910.050007
	<	-2.97	5.38	-4.79	2.43	-2.98	-1.40	-1.204
on ots	۵.	.180		.149		. 209		
Partial Correlation Coefficients	=	980.	900.	.695300	383	.655054	16	. 365
- 5 8	H	718	713	- 569.	.694383	- 559.	63916	.696 - 365
	-	.51 1.08 -	1	.892		1.27		
Computed t Value	=	.51	.04	-1.86	2.49	320 1.27	86	-2.54
3	ы	-6.10	-6.11	5.72	5.79	5.13	86.4	6.28
Analysis of Variance Regression Analysis F Value		61.8	7.16	57.27	86.0	55.0	80.4	188.4
Multiple Cor. Coef.		.917	.914	.911	606.	806.	.903	.943
ficients	G.	.140		.140		.117		
Correlation Coefficients	H H	Linear (5)914816	Linear (5)914816	.893816	.893816	.901831	.901831	768 076.
Regression Equation		Linear (5)	Linear (5)	1/T (3)	1/1 (3)	Log K (6)	Log K (6)	Log K (6)

TABLE C-6. (X) LBS/1,000 LBS THRUST, CRUISE POMER, EPR I.76--TF30-P1 ENGINE

S**		39	39	39	39	39	39
83 *		.150	.150	.153	.153	.037	.037
	-	.160		.138		.041	
Regression Equation Constants	#	.0007	.0002	003	0034	000	000
	٢	-1.73019	3.03018	-2.75 36.83	1.46 34.63	0.566	-1.43 902.5
	V	-1.73	3.03	-2.75	1.46	-2.87	-1.43
e ste	۵	.178		.152		.188	
Partial Correlation Coefficients	=	.062	019	.297	382	085	184
2 2	-	.37 1.07688 .062	682019	029.	.668	609.	765.
LL LL	-	1.07	Ť	.910		504 1.134	
Computed t	=		11	-1.84	-2.48	504	-1.121
6	H	-5.62	-5.60	5.34	5.37	4.55	4.43
Analysis of Variance Regression Analysis F Value		54.5	80.8	51.52	17.2	46.98	69.28
Multiple Cor. Coef.		806.	.904	.903	.901	.895	.891
ficients	٩	.146		.147		.179	
1on Coef	=	812	812	.882812	.882812	.826	.826
Correlation Coefficients	H	* 06	7 06	.882	.882	.887	.887
Regression Equation		Linear (5)904812	Linear (5)904812	1/1 (3)	1/1 (3)	Log K (6)	Log K (6)

TABLE C-7. CO LBS/1,000 LBS FUEL, MAXIMUM CONTINUOUS PUMER, EPR 1.905--TF30-F1 ENGINE

# 40		75	42	42	42	42	4.2	3
SE*		.162	.160	.171	.169	.033	.033	.00036
	0-	.063		.056		.022		
Regression Equation Constants	=	0001	0005	004	0045	000	000	00034
2 - 0	H	1.860220001	3.76022	1.65 42.15	41.34	975.3	933.9	-1.42 941.66600034
	<	1.86	3.76	1.65	1.88	-2.16	-1.40	-1.42
n Its	•	.061		.051		106		
Partial Correlation Coefficients	*	.380741010 .061	042	.705415	84	.677103	891 - 989	.835274
- 88	-	.741	757042	. 705	.72348	. 119.	. 989	. 835
	۵.	- 380 -	'	.317		.658		
Computed t Value	=	90.	26	-2.82	-3.40	639	990	9.735 -1.834
<u>6</u> >	H	-6.80	-7.22	6.13	6.55	5.68	5.89	9.735
Analysis of Variance Regression Analysis F Value		93.0	142.5	82.10	126.0	73.61	111.83	405.44
Multiple Cor. Coef.		.938	.938	.931	166.	.924	.923	.975
ficients	-	.144		.144		.171		
on Coef	H	848	848	.848	.848	.848	. 848	917
Correlation Coefficients	H	938 -	- 886 -	.909848	.909848	.920848	.920	.974917
Regression Equation (Linear (5)938848	Linear (5)938848	1/1 (3)	1/T (3)	Log K (6)	Log K (6)	Log K (6)

TABLE C-8. CO LBS/1,000 LBS THRUST, MAXIMUM CONTINUOUS POWER, EPR 1.905--TF30-P1 ENGINE

*		42	4.2	7,	75	75	75	42
SE		.089	.089	.092	.09	.031	.031	.031
	٩	.055		.056		.025	.025	
Regression Equation Constants	=	.0005	8000.	003	0028	000	000	001
	T 4	.49011	2.14011	515 21.90	1.19 21.09	-2.16 820.2	-2.16 820.2	-1.31 773.3
c \$	-	.097		.095		.127	.127	
Partial Correlation Coefficients	T	.601713081	724139	.586 .693455	.704531	.639177	.639177	.641258
88	H	.713	.724	.693	.704	.639		.641
	۵.		'	. 586		.790	7.90	
Computed t	Ŧ	-6.2850	87	-3.15	-3.91	-1.11	-1.11	-1.67
8,5	Н	-6.28	-6.5587	5.92	6.20	5.12	5.12	5.22
Analysis of Variance Regression Analysis F Value		90.7	138.2	84.95	129.4	71.60	71.60	108.13
Hultiple Cor. Coef.		.937	936	.933	.932	.922	.922	.920
ficients	۵	.170		.170		961.	961.	
Correlation Coefficients	H	Linear (5)935860	Linear (5)935860	.904860	.904860	.915861	.915061	.915861
Regression		Linear (5)	Linear (5)	1/T (3)	1/T (3)	Log K (6)	Log K (6)	Log K (6)

TABLE C-9. CO LBS/1,000 LBS FUEL, TAKEOFF POWER, EPR 2.05--TF30-P1 ENGINE

S **		17	11	17	17	11	11	20
SE*		.104	101.	.123	.120	.022	.022	.0199
	۵۰	.080		.134		.021		
Regression Equation Constants	æ	.0140005	0007	004	004	000 -	000	9598 670.27600033
œ	Н		2.94014	20.73	19.92	0.599	6.459	670.276
	<	.544	2.94	-2.13	1.92	-1.59	927 654.9	8656
on ats	۵.	.125		.175		.158		
Partial Correlation Coefficients	#	072	752116	.636541	.621630	.719233	.711296	.735274
ŏŏ	H	757	752	.636	.621	.719	.711	.735
	۵	97.	'	079.		.576		
Computed t	H H	-4.1726 .46757072	44	-2.32	-3.04	865	-1.16	-1.17
3 -	H	-4.17	-4.27	2.97	2.97	3,73	3.78	4.47
Analysis of Variance Regression Analysis F Value		37.8	59.9	25.86	40.3	37.16	58.36	80.89
Fultiple Cor. Coef.		.947	946.	926	.852	976.	.945	.951
ficients	٩	.463		797.		.478		
ion Coeff	=	871	871	871	871	885	885	891
Correlation Coefficients	-	. 945 -	945	.869871	.869871	.939885	.939885	.947891
Regression Equation		Linear (5)945871	Linear (5)945871	1/1 (3)	1/1 (3)	Log K (6)	Log K (6)	Log K (6)

TABLE C-10. CO LBS/1,000 LBS THRUST, TAKEDFF POWER, EPR 2.05--TF30-F1 ENGINE

Regression Equation		it fon Ca	Correlation Coefficients	Multiple Cor. Coef.	Analysis of Variance Regression Analysis F Value	87	Computed t Value		ŭ ŭ	Partial Correlation Coefficients	on Its			Regression Equation Constants		SE*	# # 03
	H	=	4			F	Т	٩	H	H	4	V	1	*	d		
r (5)	Linear (5)860749	749	.428	.870	16.6	-3.53	.41	1.06	.41 1.06662	.103	.257	-3.36	-3.36010	.0007	.173	.103	20
r (5)	Linear (5)860749	749		.860	24.1	-3.42	0.45		638	.010		1.84	1.84010	9000		.103	50
1/T (3)	.755	.755749	.428	.813	10.38	2.10	-1.21	.935	.465	-1.21 .935 .465290	.228	-4.35	13.81	-4.35 13.81002	.182	.121	20
1,7 (3)	.755	.755749		.801	15.2	1.96	1.84		.43	41		1.16	1.16 12.62	0025		.121	20
Log K (6)	.828	.828736	.437	.842	13.03	2.95	.129	129 1.10	. 594	.032	.265	-3.71	-3.71 859.4	000	.072	.041	20
Log R (6)	.828	.828736		.829	18.71	29.01	294		.563	.563071		-1.146	-1.146 815.9	۰،00		.041	20
Log K (6)	.942	.942929		.960	87.57	3.29	3.29 -2.52		.647	.647545		77	773 472.07	9000 -		.018	18

TABLE C-11. THC LBS/1,000 LBS FUEL, IDLE POWER EPR 1.08--TF30-P1 ENGINE

. *		38	38	38	82	38	38	38
S #		1.55	1.86	1.03	1.14	.037	.042	070
	۵	5.98		2.84		.11782		
Regression Fquation Constants	×	950-	.032	005	012	.000070	000	.00038
æ.	1	248	26.26235	-78.23 374.36	7.11 383.85	-5.45238 1560.453 .00070	-1.77 1504.8 .000	1.327 1279.56 .00038
	<	-153.63248	26.26	-78.23	7.11	-5.45238	-1.77	1.327
on ots	۵.	.572		. 444		867.		
Partial Correlation Coefficients	E	.825	.283	.926130	263	.303	.113	160
ပိ ပိ	-	825	752	926	.915	.832	.783	069.
Computed t Value	Н	3.37 4.68825	1.75	764 2.89	-1.61	1.86 3.35	179.	866
	-	-8.50	-6.74	14.30	13.43	8.75	7.45	5.88
Analysis of Variance Regression Analysis F Value		65.47	62.27	160.92	196:14	87.90	97.70	113.17
Multiple Cor. Coef.		.923	.884	.967	.958	.941	.921	.925
ficients	۵.	.528		.528		.513		
Correlation Coefficients	Ŧ	Linear (5)873704	Linear (5)873704	.955704	.955704	.920779	.920779	.923852
Regression Equation		Linear (5)	Linear (5)	1/T (3)	1/T (3)	Log K (6)	Log K (6)	Log K (6)

TABLE C-12. THC LBS/1,000 LBS THRUST, IDLE POWER, EPR 1.08--TF30-P1 ENGINE

Regression Equation	Correlati	ton Co	Correlation Coefficients	Multiple Cor. Coef.	Analysis of Variance Regression Analysis F Value	8 >	Computed t Value		4 5 8	Partial Correlation Coefficients	ر ع «		ă - C	Regression Equation Constants		SE	***
	_	=	۵			—	н	-	1	H	P-	V	-	=	d		
Linear (5)785653	785 -	653	.540	.833	27.88	-5.01	1.72 2.94636 .272	76	.636	.272	.435	-138.81	176	-138.81176 .034	5.31	1.94	17
Linear (5)785653	785 -	653		.789	31.22	-4.43	177.	i	584	.124		20.87	20.87170	910.		2.13	17
1/T (3)	.884653	653	.540	006.	52.85	7.98	7.98213 2.22		. 759	.759035	.343	- 89.63	- 89.63 306.50002	002	3.18	1.52	7
(1)	. 884	.884653		.886	69.57	7.98	924	٠	.791148	148		5.86	5.86 318.71009	009		1.60	17
Log K (6)	. 807	.807718	.512	.830	27.26	4.13	.284 2.05		.561	.047	.320	-5.1592	-5.1592 1257.72		.00018 .12565	.0659	1,5
Log K (6)	.807718	718		808.	35.76	3.88	- ,359	·	850 813.	.058		-1.32	1231.7000	000		690.	17
Log K (6)	.883859	859		898.	74.98	3.55	3.55 -2.23	•	. 509 348	.348		602 881.6001	881.6	001		.042	41

TABLE C-13. THE LBS/1,000 LBS FUEL, APPROACH FUMER, EPR 1.31--TF30-F1 ENGINE

*		37	37	37	37	37	37	37
SE*		.435	.429	.312	.340	.222	.232	.135
	٦	.129		.926		472		
Regression Equation Constants	Ŧ	.008	.005	006926	004	004472	003	0035
<u>.</u>	ь	090.	800	93.42	.172 86.47	3569.0	6.10 3278.9	4.95 2666.370035
	V	8.40	4.48	27.61	172	1.49	- 6.10	- 4.95
on nts	•	.278049		427		331		
Partial Correlation Coefficients	=	.278	.294	.894423427	.870293	.498292331	.446213	.580432
ĕ ŏ	H	.781	/82	768	.870	867.	944.	.580
	-	1.66283781		2.71		2.02		
Computed t Value	T H	1.66 -	1.79	-2.68 -2.71	-1.79	-1.75 -2.02	-1.27	-2.79
	_	-7.21	-7.33	11.48	10.28	3.30	2.90	4.15
Analysis of Variance Regression Analysis F Value		43.35	62.99	14.41	116,34	22.52	29.11	91.31
Multinle Cor. Coef.		.893	.892	976.	.931	.820	. 795	816.
ficients	<u>-</u>	.43		.431		.284		
Correlation Coefficients	Т	Linear (5)882690	Linear (5)882690	. 428 . 690	.928690	.783735	.783735	.898874
Regression Equation		Linear (5)	Linear (5)	1/T (3)	1/T (3)	Log K (6)	Log K (6)	Log K (6)

TABLE C-14. THC LBS/1,000 LBS THRUST, APPROACH POWER, EPR 1.31--TF30-F1 ENGINE

a dra dra dra dra dra dra dra dra dra dr					Multiple	Analysis of Variance Regression	č			- 8	Partial	ş			Regression	=		
	Correla	ation	Coeff	Correlation Coefficients	Coef.	F Value	3 >	Value		3 8	Coefficients	ats			Constants	5 1	SE*	**
	H		Ŧ	4			-	æ	d	٠	T H P	۵	<	H	=	۵		
Linear (5)884711	884	•	711	9/4.	.895	44.05	-6.80	-6.80 1.67 .789764 .279 .136	.789	764	.279	.136	-3.90	-3.90034	.005	.216	112.	37
Linear (5)884711	884		111		.892	66.50	-6.97	1.55	1	767	.257		2.63	2.63035	•00.		.270	37
1/1 (3)	.910	1117 016.	111	.476	678.	62.02	8.49	-2.13838	838	.828	-, 347	.144	6.17	6.17 51.75	004207	207	.235	37
1/7 (3)	.910	111 016.	111		.919	93.50	8.67	-1.99		.830	322		035	035 50.22	003		.234	37
Log K (6)	.810	.810772	27.1	.342	.832	24.65	3.10	-1.75 -1.16	1.16	.475	291198	198	1.56305	3288.85	1.56305 3288.85620040426428	426428	.22532	37
Log K (6)	.810	.810772	712		.824	35.93	2.96	-1.54		.453	-,255		-6.10	3133.5	-6.10 3133.5003		.226	37
Log K (6)	.894	.894883	883		.418	46.02	3.75	3.75 -3.12		.531	461		-4.67	-4.67 2424.3	004		.139	39

TABLE C-15. THC LBS/1,000 LBS FUEL, CKUISE FOWER, EPR 1.76--TF30-P1 ENGINE

₩ ₩		32	32	32	32	32	32	32
SE		.215	.213	.224	.226	.281	.278	. 202
	D	157		280		.159		
Regression Equation Constants	=	. 001	.001	- 900* -	003	000159	001	0001
<u>ស្</u> គប់	1	•000	.96011	4.18			3670.0	3206.740001
	<	5.64009	96.	8.91	.349 8.91	-2.03 3247.4	-7.68	-6.75
e s:	۵	129		221		. 100		
Partial Correlation Coefficients	#	.003129	.067	.307221	.160241	.303021100	.026	.464011
3 కి	-	295	368	.072	.160	.303	.367	797
ب	۵.	.015687295		-1.20		530		
Computed t	=	.015	.360	.384 -1.71 -1.20	3 -1.33	113	.140	062
	ы	-1.64	-2.13	.38	.873	1.68	2.12	2.82
Analysis of Variance Regression Analysis F Value		6.15	9.15	4.87	67.9	6.87	10.42	22.23
Multiple Cor. Coef.		.630	.622	.586	.556	.651	.647	877.
Correlation Coefficients	Н	Linear (5)620539123	.539	.516539123	.539	.646578092	.573	.705
Correlatio	T	620 -	Linear (5)620539	- 916	.516539	- 979.	.646573	.778705
Regression Equation		Linear (5)	Linear (5)	1/T (3)	1/T (3)	Log K (6)	Log K (6)	Log K (6)

TABLE C-16. THC LBS/1,000 LBS THRUST, CRUISE FOWER, EPR 1.76--TF30-P1 ENGINE

**		32	32	32	32	32	32	
SE*		.124	.123	.130	.131	.278	.275	.200
Regression Equation Constants	e.	.000087	.001	002159	002	001168	100.	.002
8 2 2 3	Τ	3.13005	.552006	5.02 2.42 -	- 201 5.08	-1.80 314.7	-7.75 3590.3	-6.74 1127.9
Partial Correlation Coefficients	T H P	.009123	.071	-1.66 -1.17 .072299215	.158234	.297022106	.363028	.453023
	II d	.049654295	366	-1.17 .072	.158		.363	.453
Computed t	H T	-1.63 .049	-2.12 .382	.384 -1.66	.861 -1.30	1.65118565	2.09 .151	2.73123
Analysis of Variance Regression Analysis F Value		5.89	8.80	79.7	6.20	99.9	10.04	21.74
Multiple Cor. Coef.		.622	.615	.576	.547	.645	.640	477.
Regression Equation Correlation Coefficients	T H P	Linear (5)612531121	Linear (5)612531	1/т (3) . 509531121	1/T (3) .509531	Log K (6) .639565098	Log K (6) .639565	Log K (6) .774705

TABLE C-17. THC LBS/1,000 LRS FUEL, MAXIMUM CONTINUOUS PIMER, EFR 1.905--TF30-P1 ENGINE

**		37	37	37	37	37	37	3		# #/	
SE*		.243	.240	.255	.251	.338	.333	.281		S #	
	<u>a</u>	.139		.040		.002					-
Regression Equation Constants	×	.002	.002	002	700	.002	.002	0004	ENGINE	Regression Equation Constants	H
~	-	012	110 006.	12.100	.190 12.41	4033.5	4028.4	3402.0	IF 30-P1	~	н
	<	-2.23012	006	-1.02 12.100	.190	-8.58 4033.5	-8.50	-7.22	1.905		V
no Tr	۵	060.		.025		.001			THC LRS/1,000 LBS THRUST, MAXIMUH CONTINUOUS POWER, EPR 1.905TF30-P1 ENGINE	n Jts	-
Partial Correlation Coefficients	=	.127	.100	111	129	.057	.061	.025	INDOUS P	Partial Correlation Coefficients	×
3 8	H	.352	345	194	.198	.323	.345	.353	UN CONT	88	H
	۵	- 615.	1	.143		.007			, MAXIM		٩
Computed t	I	137	. 588	779	761	.326	.357	153	S THRUST	Computed t	Ŧ
8-	H	-2.16	-2.14	1.13	1.18	1.96	2.14	2.29	1,000 LB	87	H
Analysis of Variance Regression Analysis F Value		5.04	7.58	3.59	5.54	5.83	9.02	17.20		Analysis of Variance Regression Analysis F Value	
Multiple Cor. Coef.		.561	.555	967.	967.	.589	.589	769 °	TABLE C-18.	Multiple Cor. Coef.	
ficients	Ы	.018		.017		043				ficients	-
ton Coef	=	797 -	799	795	794	508	508	639		ion Coef	=
Correlation Coefficients	ı	549	. 695	.483464	.483	. 587	.587	. 469.		Correlation Coefficients	H
Regression Equation		Linear (5)	Linear (5)549464	1/T (3)	1/T (3)	Log K (6)	Log K (6)	Log K (6)	C-10	Regression Equation	

37

.140

37

.067

.00

-1.46 - .007 .516 - .006 - .159 7.02

.075

.122

.433 - .344

. 708

-2.10 -2.11 1.07 1.14 1.88 2.08

4.80 7.28 3.41 5.27 5.44 8.41

.551

.00

Linear (5) - .541 - .456

- .541 - .456 .473 - .456 .473 - .456

Linear (5)

101

- .341

. 594 - . 669 - . 754

.548

.007

37

37

.001 - .015

-7.91 3840.1

.053 -.007

.311

-.040

.303

.118 6.88

,0004

3828.1

.002

3870.5

-8.41

.060

.335

.351

37

.146 .336 .331

600.

- .001

.010

.182 - .116

.057

- .128

191

.486

.575

- .049

.573 - .496

Log K (6)

1/7 (3)

.573 - .496

.575

- .629

. 703

Log K (6) Log K (6)

TABLE C-19. THC LBS/1,000 LBS FUEL, TAKEOFF POWER, FPR 2.05--TF30-P1 ENGINE

** **		18	18	18	18	18	18	20		8# S		15	15	15	15	115	15
SE*		0.222	.216	.239	.232	.317	.307	.243		SE*		.071	.075	.076	.080	2.50	2.46
C 16	۵	.163		.163		060			e	•	d	210		222		383	
Regression Equation Constants	×	.004	.003	001	001	000	.001	.0017	Regression Equation	Constants	H	.001	.002	000 -	000	900.	.008
-	H	015	+10	18.43	.064 17.27	6.1004	1.6905	-10.614 5116.99			+	900	.544007	9.24	16.09	6.1979	7390.9
	4	-3.88	1.01	-4.89	790.	-5.67	-8.53	-10.614	30-P1 ENG		V	6.80	.544	6.71	.128	2.03	-15.41
1 Lon : n ts	<u>a</u>	.111		.108		045			THC LBS/1,009 LBS THRUST, TAKEOFF PUMER, EPR 2.05FF30-P1 ENGINE lysis resion Computed t Correlation lysis	ents	4	433		408		238	
Partial Correlation Coefficients	=	.199	.174	990	111	.018	.033	.115	WER, EPR 2.0 Partial Correlation	Coefficients	H	.112	. 297	146	.092	.259	.375
80	ы	.470	459	.325	. 306	.369	.378	. 566	COFF POW	0	н	044	525	.258	.427	.509	.573
.	4	077		907	-2	07i		_	ST, TAK		А	-1.59		-1.48		813	
Computed t Value	#	.760	.683	246	434	690.	.128	.480	I.B.S THRUST	Value	I	.374	1.08	4 488	.321	.890	1.40
	H	-1.99	-2.00	1.26	1.24	1.49	1.58	2.83	6/1,000		H	-1.63	-2.14	.884	1.64	1.96	2.42
Analysis of Variance Regression Analysis F Value		3.50	5.45	2.43	3.77	3.43	67.5	15.03	Ang f v egr	F Value		4.13	4.36	3.06	3.18	3.18	4.56
Multiple Cor. Coef.		.655	679*	.585	.578	.651	.650	662.	TABLE C-20. Multiple R	Coef.		.728	679	.675	.588	.681	.657
ificients	d-	.216		.216		.129				ffictents	4	301		301		211	
Correlation Coefficients	=	.635516	.635516	.571516	.571516	.650572	.650572	.796684		Correlation Coefficients	#	.604448	877 - 709.	.584448	.584448	.582392	.582392
	H	1	ı	.5	5.				ę		H	1	1	2.	٥.		
Regression Equation		Linear (5)	Linear (5)	1/T (3)	1/T (3)	Log K (6)	Log X (6)	Log K (6)	C-11	Equation		Linear (5)	Linear (5)	1/7 (3)	1/1(3)	Log K (6)	Log K (6)

. 20

.0022

-11.86 5661.19

.180

.586

2.61 .662

11.58

.800

.793 - .672

Log F. (6)

TABLE C-21. NOX LBS/1.000 LBS FUEL, IDLE POWER, EPR 1.08--TF30-P1 ENGINE

2**		42	42	42	42	42	42	77
SE		. 386	.383	.406	.401	.065	.065	.038
	۵	270		043		043		
Regression Equation Constants	Ŧ	.025009270	008	4.55 -28.39001043	3.26 -28.57001	3.96 -1123.1001043	-1113.1001	2.17 -882.50011
	۲	.025	.024	-28.39	-28.57	-1123.1	-1113.1	-882.5
	<	9.73	1.59	4.55	3,26	3.96	2,62	2.17
on at s	d	122		810		116		
Partial Correlation Coefficients	T H	.498336122	.491315	082	.413080	323	304	432
និ និ	H	.498	165.	807	.413	515	509304	619432
<u>بر</u>	а	3.54 -2.20759		-2.75509113408082018		-3.70 -2.10720515	•	•
Computed t Value	H	-2.20	3.52 -2.07	509	-2.84504	-2.10	-3.69 -1.99	-5.04 -3.07
	H	3.54	3.52	-2.75	-2.84	-3.70	-3.69	-5.04
Analysis of Variance Regression Analysis F Value		5.70	8.40	3.90	5.99	6.57	9.72	16.43
Multiple Cor. Coef.		.557	. 548	.485	.485	.585	.577	.667
ficients	۵	.278197		.278197		.315214		
ion Coef	=	.278	.278	.278	.278	.315	.315	.317
Correlation Coefficients	H	.472	.472	480	480	515	515	563
Regression Equation		Linear (5)	Linear (5)	1/1 (3)	1/T (3)	Log K (6)	Log K (6)	Log K (6)

TABLE C-22. NOK LBS/1,000 LBS THRUST, IDLE POWER, EPR 1.08--TF30-P1 ENGINE

*		C 7	07	07	0\$	07	0*	37
₩ ₩		.283	.279	.315	.315	090.	.059	.024
	0.	980.		.321		.019		
Regression Equation Constants	=	.024008	.024008	000	001	001	002	0015
2-0	-	.024		-6.95 -25.25000	2.72 -24.22001	2.33 -1283.3001	2.90 -1291.0002	2.47 -1060.20015
	<	-1.43	1.16	-6.95	2.72	2.33	2.90	2.47
on nt s	۵.	.053		.174		750		
Partial Correlation Coefficients	T H	.605395 .053	429	075	082	378	412	742
ŏŏ	H		609.	-3.15149 1.06465	447	.326603	909	838
ų.	H	.317		1.06				
Computed t	=	4.56 -2.58 .317	4.67 -2.89	149	500	-2.45	-2.75	-6.45
8	Н	4.56	4.67	-3.15	-3.04	-4.53	-4.63	-8.97
Analysis of Variance Regression Analysis F Value		9.03	13.82	4.99	6.90	8.96	13.73	43.52
Multiple Cor. Coef.		.655	.654	.542	.521	.654	.653	.848
ficients	۵	.300061		.300061		.305069		
ion Coef	=	.300	.300	.300	.300	.305	. 305	.233
Correlation Coefficients	T	.547	.547	516	516	556	556	613
Regression Equation		Linear (5)	Linear (5)	1/1 (3)	1/1 (6)	Log R (6)	Log K (6)	Log K (6)613

TABLE C-23. NOX LBS/1,000 LBS FUEL, APPROACH POWER EPR 1.31--TF30-P1 ENGINE

sion ion serts SE* S**	A	12 .842 .338 39	14 .360 39		00 1.135 .407 39	1.135 .407	1.135 .407 .438 .071 .028	.071 .438 .071 .028
Regression Equation Constants	H T A	-21.77040012	3.73 .039 .014	-27.89 -45.34 .000		6.18 -37.53002	-37.53	-37.53 -832.6 -792.2
Partial Correlation Coefficients	H	744502 .378 -2	.705552	.594 .012 .403 -2		505140	140	140 461 .384 518 2
Computed t Value	T H P	6.58 -3.44 2.42	5.96 -3.97	4.37 .069 2.61		-3.51847	847 -3.07 2.46	847 -3.07 2.46 -3.63
Analysis of Variance Multiple Regression Cor. Analysis Coef. F Value		.776 17.69	.732 20.82	.652 8.62		- 17.8 090.	8.21	8.21 17.22 20.01
Mu Correlation Coefficients C	H .	.578 .280024	.578 .280	47 .280022	47 .280			.294
Regression Equation Corr	H	Linear (5) .5	Linear (5) .5	1/1 (3)547	1/T (3)547		Log K (6)594	1 1

2 2 2 2

760.

- .029 -1143.0 - .002

.377

-4.05 2.30 - .738 - .582

-6.18

13.69

.100

.039

- .428

Log K (6)

Log R (6)

- .438

1/T (3)

1117. - 191. -

-5.63

-7.200

2.42 -949.29 - .0015

.344

1.04

-27.05 -42.50 4.24 -35.14

.451

- .374

- .552

-2.32

-1.53 2.86 - .651 - .261

-4.85

8.61

.553

.141

.039

1/1 (3)

900. -

TABLE C-25. NOX LBS/1,000 LBS FUEL, CRUISE MYMER, EPR 1.76--1F30-P1 ENGINE

n SE*	۵.	055 .521 39	.514 39	.134 .588 39	.581 39	006 .021 39	.021 39	6.0
Regression Equation Constants	H	035	.087035	017	018	001	001	0 700
-	+	8.12 .087035055		9.68 -154.95017	13.77 -157.09018	3.17 -1000.3001006	2.97 -987.0001	
	<	8.12	6.47	9.68	13.77	3.17	2.97	,
on	4	018		.039		047		
Partial Correlation Coefficients	T H P		989 797.	452	731502	999	769 518	
00	-		797.	.230703452	731	277197666047	814	4
ted t	±	7.30 -5.10107	70		87		78	į
Computed t	T H	7.30 -5.	7.91 -5.70	-5.85 -2.10	-6.42 -3.48	-7.81 -5.29	-8.41 -5.84	
Analysis of Variance Regression Analysis F Value		23.35	36.01	15.80	24.32	26.97	41.48 -	
Multiple Cor. Coef.		.817	.817	.759	.758	.836	.835	0
ficients	Ч	.179		.179		.167		
Correlation Coefficients	#	.295	.295	.295	.295	.321	.321	. / .
Correlat	F	.605	.605	756	657	641	641	
Regression Equation		Linear (5)	Linear (5)	1/T (3)	1/T (3)	Log K (6)	Log K (6)641	777 77 1

TABLE C-26. NOx 1.BS/1,000 LBS THRUST, CRUISE POWER, EPR 1.76-TF30-P1 ENGINE

SE*		.337 39	.333 39	.387 39	.381 39	.024 39	.024 39	.016 41
	a			.029		010		
Regression Equation Constants	Ŧ	022	021	010	010	002	002	0012
2 - 0	H	-79.46 .057022106	3.50 .056	7.26 -99.13	8.16 -99.59	-1117.2	-1094.6	2.66 -955.88
	4	-79.46	3.50	7.26	8.16	3.29	2.94	2.66
on	G.	053		.013		072		
Partial Correlation Coefficients	H	.779638053	667	694405	446	679	675	750
ČÕ	-	971.	.795		719	797	812	.866
ų	Ь	317		9/0.		425		
Computed t	=	7.35 -4.90317	7.87 -5.37	-5.70 -2.62	-6.20 -2.99	-7.81 -5.05	-8.34 -5.48	-10.71 -6.99
	Н	7.35	7.87	-5.70	-6.20	-7.81	-8.34	
Analysis of Variance Regression Analysis F Value		42.78	37.83	15.86	24.46	28.31	43.37	76.78
Multiple Cor. Coef.		.881	.823	.759	.759	.842	.841	.895
ficients	d	.140		.140		.135		
ion Coef	Ŧ	.351	.351	.351	.351	.373	.373	.451
Correlation Coeffictents	F	.648	879.	686	686	679	679	739
Regression		Linear (5)	Linear (5)	1/T (3)	1/1 (3)	Log K (6)	Log K (6)	Log K (6)

TABLE C-27. NOX LBS/1,000 LBS FUEL, MAXIMUM CONTINUOUS POWER, EPR 1.905--TF30-P1 ENGINE

**		42	42	4.2	42	42	42	42
SE*		.549	.556	.623	.624	.019	.019	610.
	٩	.820		.714		.02600		
Regression Equation Constants	Ŧ	047	051	029	032	00168	002	0012
S E C	A T	.102047	.107051	- 4.39 -194.57029	17.36 -205.41032	2.26902 -981.17200168	3.15 -1028.3002	2.63 - 779.520012
	A	-16.44	8.02	- 4.39	17.36	2.26902	3.15	2.63
on ats	d	.288		.174		. 205		
Partial Correlation Coefficients	H H	.829763 .288	.851813	773640	808720	1.29842777	864825	119 671
5 5	н	.829	.851	773	808	842	864	671
ند	۱.	1.44		1.09		1.29		
Computed t	T H	9.14 -7.29 1.44	-8.73	-5.13	-6.48	-7.60	-9.12	-4.85
37	H	9.14	10.13 -8.73	-7.51 -5.13	-8.57 -6.48	-9.64 -7.60	-10.72 -9.12	-7.06
Analysis of Variance Regression Analysis F Value		36.01	51.55	25.13	36.93	39.71	57.73	33.94
Multiple Cor. Coef.		.860	.851	.815	.809	.871	.865	767.
ficients	Ь	.364		.364		.363		
on Coeff	=	.055	.055	.055	.055	.058	.058	.410
Correlation Coefficients	1	.435	.435	532	532	457	457	779 -
Regression Equation		Linear (5)	Linear (5)	1/1 (3)	1/T (3)	Log K (6)	Log K (6)	Log K (6)

TABLE C-28. ROx/1,000 LBS THRUST MAXIMUM CONTINUOUS POWER, EPR 1.905--TF30-P1 ENCINE

Regression Equation	Correlat	1on Coef	Correlation Coefficients	Multiple Cor. Coef.	Analysis of Variance Regression Analysis F Value	8	Computed t Value		<u>ខ</u> ខិ	Partial Correlation Coefficients	ī ā		ec	Regression Equation Constants		83 *3	*
	н	×	۵.			H	T H P	۵	-	T H F	~	~	F	A T H	4		
Linear (5)	.511	.171	.371	.808	22.01	6.70	6.70 -4.99 .941	.941	.750	.750645 .157	.157	-3.89	-0.89 .068029	029	.447	424.	39
Linear (5)	.511	.171		.803	32.67	7.90	7.90 -6.23		961.	.796721		4.37	.072	032		.424	39
1/T (3)	561	.171	.371	.735	13.73	-5.03	-5.03 -3.10	099.	879 099	464	.111	. 88	-132.11	017	.377	.489	39
1/T (3)	561	.171		.731	20.70	-6.25 -4.13	-4.13		722	567		10.66	10.66 -140.86018	018		.485	39
Log R (6)	532	.180	.375	.817	23.47	-6.89	-6.89 -5.06	.834	759650	650	.140	2,32354	2.32354 -1081.55290017	1290017	.02359	.02503 39	39
Log K (6)	532	.180		.813	35.15	-8.18	-8.18 -6.34		806	127		3,15	-1146.9002	002		.025	39
Log K (6)	651	.348		.848	50.17	-9.13	-9.13 -6.42		825	717		2.87		-102.550013		.02	42

TABLE C-29. NON LBS/1,000 FUEL, TAKEOFF POWER, EPR 2.05--1F30-F1 ENGINE

## KS		61	19	19	19	19	19	21
SE*		.610	.678	769	.714	.019	.021	.014
	۵.	2.26		1.67		690.		
Regression Equation Constants	æ	.074018	.076026	005	012	001	001	2.35 -625.00007
E	-			-34.27 -125.06005	16.35 -136.48012	.292 -63.59	2.43 -658.9001	-625.0
	«	-58.08	9.93	-34.27	16.35	.292	2.43	2,35
n its	£.	.492		.338		.480		
Partial Correlation Coefficients	H	.737427	.698526	137	339	426	537	670
33	-	.737	869.	761 689	658339	754426	537537	827670
	4	2.19		1.39		2.12		
Computed t Value	H	4.22 -1.83	3.90 -2.47	-3.22534 1.39	-3.49 -1.44	-4.44 -1.82	-4.18 -2.55	-6.25 -3.83
5	-	4.22	3.90	-3.22	-3.49	74.44	-4.18	-6.25
Analysis of Variance Regression Analysis F Value		9.76	06.6	6.40	8.16	10.81	11.47	26.58
Multiple Cor Coef.		.813	.744	674.	.711	.827	.768	798.
ficients	4	760.		.095		.081		
Ion Coeff	=	.357	.357	.357	.357	.374	.374	.445
Correlation Coefficients	T	.618	.618	+99• -	664	059	650	735
Regression Equation		Linear (5)	Linear (5)	1/T (3)	1/T (3)	Log K (6)	Log K (6)	Log K (6)735

TABLE C-30. NOx LBS/1,000 LBS THRUST, TAKEOFF POWER, EPR 2.05--TF30-P1 ENGINE

Regression Equation	Correlation Coefficients	on Coef	ficients	Multiple Cor. Coef.	Analysis of Variance Regression Analysis F Value	3-	Computed t Value		- ō,	Partial Correlation Coefficients	r s		9 4 0	Regression Equation Constants		SE*	**
	ı	Ξ	۵-			H	π L	۵-	-	Ξ.	۵.	K	F	×	۵.		
Linear (5)	.550	.223	.159	. 780	7.78	4.25	4.25 -2.65	.876	.739	565	.221	20.21	.071	025	.850	.577	19
Linear (5)	.550	.223		.767	11.45	4.58	4.58 -3.34		.753	641		5.28	.074	029		.573	19
1/1 (3)	598	.223	159	.709	5.04	-3.31	-3.31 -1.32	661.	650	322	.202	-15.34	-118.76011	011	.879	.651	19
1/T (3)	598	.223		169.	7.41	-3.64 -1.95	-1.95		673	439		11.32	-125.57014	014		.644	19
Log K (6)	581	.243	.147	.792	07.8	-4.40 -2.64	-2.64	.834	751	563	.211	1.59	-958.4001	001	.041	.029	19
Log K (6)	581	.243		.781	12,49	-4.75	-3.34		765	640		2.91	-998.9	001		.029	19
pacpus	Actandated Trends of the Retinator	the Bet to	945														

APPENDIX D

GRAPHICAL SOLUTION FOR κ_3 HUMIDITY CONSTANT FOR $\text{NO}_{\mathbf{x}}$ EI--J57-43 ENGINE

APPENDIX D

LIST OF ILLUSTRATIONS

Figure		Page
D - 1	NO _X EI versus Combustor Inlet TemperatureSpecific	
	Humidity 0 to 20 Grains H ₂ 0 per Pound of Dry Air	D-1
D-2	${ m NO}_{f x}$ EI versus Combustor Inlet TemperatureSpecific Humidity 60 to 80 Grains H2O per Pound of Dry Air	D-2
D-3	${ m NO}_{ m X}$ EI versus Combustor Inlet TemperatureSpecific Humidity 130 to 150 Grains H2O per Pound Dry Air	D-3
D-4	Humidity Constant "K3"	D-4

FIGURE D-1. NOX EI VERSUS COMBUSTOR INLET TEMPERATURE--SPECIFIC HUMIDITY 0 TO 20 GRAINS H₂O PER POUND OF DRY AIR

FIGURE D-2. NO EI VERSUS COMBUSTER INLET TEMPERATURE--SPECIFIC HUMIDITY 60 TO 80 GRAIN H₂O PER POUND OF DRY AIR

FIGURE D-3. NO EI VERSUS COMBUSTOR INLET TEMPERATURE--SPECIFIC 76-16-D3 HUMIDITY 130 TO 150 GRAIN H₂O PER POUND DRY AIR

FIGURE D-4. HUMIDITY CONSTANT "K3"